-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathvisualize_values.py
210 lines (151 loc) · 6.27 KB
/
visualize_values.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import matplotlib
matplotlib.use('agg')
import time
import multiprocessing as mp
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from utils import *
from param import *
from environment import *
from actor_agent import *
from job_generator import *
from average_reward import *
from compute_baselines import *
from tensorboard_summaries import *
def collect_values(agent_id, param_queue, job_queue, value_queue):
np.random.seed(args.seed) # for environment
tf.set_random_seed(agent_id) # for model evolving
sess = tf.Session()
# set up actor agent for training
actor_agent = ActorAgent(sess)
# synchronize model parameters
actor_params = param_queue.get()
actor_agent.set_params(actor_params)
# collect experiences
for ep in xrange(args.num_ep):
# get streaming job sequence
stream_jobs, service_rates = job_queue.get()
# set up envrionemnt
env = Environment(len(stream_jobs), stream_jobs, service_rates)
# set up training storage
batch_reward, batch_wall_time = [], []
# run experiment
state = env.observe()
done = False
while not done:
# decompose state (for storing infomation)
workers, job, curr_time = state
inputs = np.zeros([1, args.num_workers + 1])
for worker in workers:
inputs[0, worker.worker_id] = \
sum(j.size for j in worker.queue) / \
args.job_size_max / 10.0 # normalization
inputs[0, -1] = job.size / args.job_size_max # normalization
# draw an action
action = actor_agent.predict(inputs)[0]
# store wall time
batch_wall_time.append(curr_time)
# interact with environment
state, reward, done = env.step(action)
# scale reward for training
reward /= args.reward_scale
# store reward
batch_reward.append(reward)
# store final time
batch_wall_time.append(env.wall_time.curr_time)
# report rewards to master agent
value_queue.put([batch_reward, batch_wall_time])
sess.close()
def main():
np.random.seed(args.seed)
tf.set_random_seed(args.seed)
# create result and model folder
create_folder_if_not_exists(args.result_folder)
create_folder_if_not_exists(args.model_folder)
# initialize communication queues
param_queues = [mp.Queue(1) for _ in xrange(args.num_agents)]
job_queues = [mp.Queue(1) for _ in xrange(args.num_agents)]
value_queues = [mp.Queue(1) for _ in xrange(args.num_agents)]
# set up training agents
agents = []
for i in xrange(args.num_agents):
agents.append(mp.Process(target=collect_values, args=(
i, param_queues[i], job_queues[i], value_queues[i])))
# start training agents
for i in xrange(args.num_agents):
agents[i].start()
# set up central session
sess = tf.Session()
# set up actor agent in master thread
actor_agent = ActorAgent(sess)
# initialize model parameters
sess.run(tf.global_variables_initializer())
# set up logging processes
saver = tf.train.Saver(max_to_keep=args.num_saved_models)
# load trained model
if args.saved_model is not None:
saver.restore(sess, args.saved_model)
# synchronize the model parameters for each agent
actor_params = actor_agent.get_params()
for i in xrange(args.num_agents):
param_queues[i].put(actor_params)
# initialize worker service rates
if args.service_rates is not None:
assert len(args.service_rates) == args.num_workers
service_rates = args.service_rates
else:
service_rates = [np.random.uniform(
args.service_rate_min, args.service_rate_max) \
for _ in xrange(args.num_workers)]
# ---- visualize some values ----
for ep in xrange(args.num_ep):
print 'collection epoch', ep
stream_jobs = generate_jobs(int(args.num_stream_jobs))
# send out parameters to training agents
for i in xrange(args.num_agents):
job_queues[i].put([stream_jobs, service_rates])
# storage for advantage computation
all_reward, all_wall_time, all_diff_time = [], [], []
# store average reward for computing differential rewards
avg_reward_calculator = AveragePerStepReward(args.average_reward_storage)
t1 = time.time()
# update average reward
for i in xrange(args.num_agents):
batch_reward, batch_wall_time = value_queues[i].get()
batch_diff_time = np.array(batch_wall_time[1:]) - np.array(batch_wall_time[:-1])
avg_reward_calculator.add_list_filter_zero(batch_reward, batch_diff_time)
all_reward.append(batch_reward)
# for diff reward
all_wall_time.append(batch_wall_time[:-1])
all_diff_time.append(batch_diff_time)
t2 = time.time()
print 'got reward info from workers', t2 - t1, 'seconds'
# compute differential reward
all_diff_cum_reward = []
avg_per_step_reward = avg_reward_calculator.get_avg_per_step_reward()
for i in xrange(args.num_agents):
diff_reward = np.array([r - avg_per_step_reward * t for \
(r, t) in zip(all_reward[i], all_diff_time[i])])
diff_cum_reward = discount(diff_reward, args.gamma)
all_diff_cum_reward.append(diff_cum_reward)
# compute wall time based baseline
# baselines = get_ployfit_baseline(all_diff_cum_reward, all_wall_time)
baselines = get_piecewise_linear_fit_baseline(all_diff_cum_reward, all_wall_time)
# visualize value trajectories
fig = plt.figure()
for i in xrange(args.num_agents):
plt.plot(all_wall_time[i], all_diff_cum_reward[i], 'b', alpha=0.8)
plt.plot(all_wall_time[i], baselines[i], 'black', alpha=0.8)
plt.xlabel('Time')
plt.ylabel('Differential value')
plt.tight_layout()
plt.savefig(args.result_folder + \
'value_visualization_' + str(ep) + '.png')
plt.close(fig)
sess.close()
if __name__ == '__main__':
main()