-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanother-example.py
389 lines (288 loc) · 13.6 KB
/
another-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import shutil
import math
import multiprocessing
from datetime import datetime
import itertools
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import data
from tensorflow.python.feature_column import feature_column
print(tf.__version__)
# Data pipeline input function
def csv_input_fn(files_name_pattern, mode=tf.estimator.ModeKeys.EVAL,
skip_header_lines=0,
num_epochs=None,
batch_size=200):
shuffle = True if mode == tf.estimator.ModeKeys.TRAIN else False
num_threads = multiprocessing.cpu_count() if MULTI_THREADING else 1
print("")
print("* data input_fn:")
print("================")
print("Input file(s): {}".format(files_name_pattern))
print("Batch size: {}".format(batch_size))
print("Epoch Count: {}".format(num_epochs))
print("Mode: {}".format(mode))
print("Thread Count: {}".format(num_threads))
print("Shuffle: {}".format(shuffle))
print("================")
print("")
file_names = tf.matching_files(files_name_pattern)
dataset = data.TextLineDataset(filenames=file_names)
dataset = dataset.skip(skip_header_lines)
if shuffle:
dataset = dataset.shuffle(buffer_size=2 * batch_size + 1)
dataset = dataset.batch(batch_size)
dataset = dataset.map(lambda csv_row: parse_csv_row(csv_row), num_parallel_calls=num_threads)
if PROCESS_FEATURES:
dataset = dataset.map(lambda features, target: (process_features(features), target),
num_parallel_calls=num_threads)
dataset = dataset.repeat(num_epochs)
iterator = dataset.make_one_shot_iterator()
features, target = iterator.get_next()
return features, target
# Parsing
def parse_csv_row(csv_row):
columns = tf.decode_csv(csv_row, record_defaults=HEADER_DEFAULTS)
features = dict(zip(HEADER, columns))
for column in UNUSED_FEATURE_NAMES:
features.pop(column)
target = features.pop(TARGET_NAME)
return features, target
# Preprocessing
def process_features(features):
features['CRIM'] = tf.log(features['CRIM']+0.01)
features['B'] = tf.clip_by_value(features['B'], clip_value_min=300, clip_value_max=500)
return features
# Create Feature Columns
def get_feature_columns(hparams):
numeric_columns = [
tf.feature_column.numeric_column(feature_name) for feature_name in NUMERIC_FEATURE_NAMES]
indicator_columns = [
tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_vocabulary_list(item[0], item[1]))
for item in CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.items()]
return numeric_columns + indicator_columns
# Define model function
def model_fn(features, labels, mode, params, config):
feature_columns = get_feature_columns(params)
# Create first "numerical" layer by concatenating the features
# transformed according to features_columns
input_layer = feature_column.input_layer(features, feature_columns)
# Defining the tf.keras.Model
# The first step is defining a tf.keras.Input that matches
# the dimension on input_layer
input_layer_dimension = input_layer.shape.as_list()[1]
inputs = tf.keras.Input(shape=(input_layer_dimension, ))
# The second step is defining the hidden layers
x = tf.keras.layers.Dense(params.hidden_units[0], activation=tf.nn.relu)(inputs)
for layer_size in params.hidden_units[1:]:
x = tf.keras.layers.Dense(layer_size, activation=tf.nn.relu)(x)
# The output layer has size 1 because we are solving a regression problem
outputs = tf.keras.layers.Dense(1)(x)
# The final step is defining the tf.keras.Model
model = tf.keras.Model(inputs=inputs, outputs=outputs)
# Now that we have our model we can compute the value of the logits
logits = model(input_layer)
# passing in a parameter for gradient accumulation
gradient_accumulation_multiplier= params.gradient_accumulation_multiplier
def _train_op_fn(loss):
"""Returns the op to optimize the loss."""
global_step = tf.train.get_global_step()
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
accum_grads = [tf.Variable(tf.zeros_like(t_var.initialized_value()), trainable=False) for t_var in tvars]
optimizer = tf.train.AdamOptimizer()
def apply_accumulated_gradients(accum_grads, grads, tvars):
accum_op= tf.group([accum_grad.assign_add(grad) for (accum_grad, grad) in zip(accum_grads, grads)])
with tf.control_dependencies([accum_op]):
normalized_accum_grads = [1.0*accum_grad/gradient_accumulation_multiplier for accum_grad in accum_grads]
# global_step is not incremented inside optimizer.apply_gradients
minimize_op= optimizer.apply_gradients(zip(normalized_accum_grads, tvars), global_step = None)
with tf.control_dependencies([minimize_op]):
zero_op= tf.group([accum_grad.assign(tf.zeros_like(accum_grad)) for accum_grad in accum_grads])
return zero_op
# Create training operation
train_op = tf.cond(tf.math.equal(global_step % gradient_accumulation_multiplier, 0),
lambda: apply_accumulated_gradients(accum_grads, grads, tvars),
lambda: tf.group([accum_grad.assign_add(grad) for (accum_grad, grad) in zip(accum_grads, grads)])
)
# global_step is incremented here, regardless of the tf.cond branch
train_op = tf.group(train_op, [tf.assign_add(global_step, 1)])
return train_op
head = tf.contrib.estimator.regression_head(
label_dimension=1,
name='regression_head'
)
return head.create_estimator_spec(
features,
mode,
logits,
labels=labels,
train_op_fn=_train_op_fn
)
# Define new metrics
def metric_fn(labels, predictions):
metrics = {}
pred_values = predictions['predictions']
metrics["mae"] = tf.metrics.mean_absolute_error(labels, pred_values)
metrics["rmse"] = tf.metrics.root_mean_squared_error(labels, pred_values)
return metrics
# Define the estimator
def create_estimator(run_config, hparams):
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params=hparams
)
estimator = tf.contrib.estimator.add_metrics(estimator, metric_fn)
return estimator
if __name__ == "__main__":
# Settings
#
print("############################################################################################")
print("SETTINGS")
MODEL_NAME = 'housing-price-model-01'
DATA_FILE = 'data/housingdata.csv'
TRAIN_DATA_FILES_PATTERN = 'data/housing-train-01.csv'
TEST_DATA_FILES_PATTERN = 'data/housing-test-01.csv'
RESUME_TRAINING = False
PROCESS_FEATURES = True
MULTI_THREADING = True
# Define Dataset Metadata
#
HEADER = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
HEADER_DEFAULTS = [[0.0],[0.0],[0.0],['NA'],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0]]
NUMERIC_FEATURE_NAMES = ['CRIM', 'ZN','INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY = {'CHAS':['0', '1']}
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.keys())
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
TARGET_NAME = 'MEDV'
UNUSED_FEATURE_NAMES = list(set(HEADER) - set(FEATURE_NAMES) - {TARGET_NAME})
print("Header: {}".format(HEADER))
print("Numeric Features: {}".format(NUMERIC_FEATURE_NAMES))
print("Categorical Features: {}".format(CATEGORICAL_FEATURE_NAMES))
print("Target: {}".format(TARGET_NAME))
print("Unused Features: {}".format(UNUSED_FEATURE_NAMES))
# Load and analyse dataset
housing_dataset = pd.read_csv(DATA_FILE, header=None, names=HEADER )
# housing_dataset.head()
# Prepare Training and Test Sets
DATA_SIZE = len(housing_dataset)
print("Dataset size: {}".format(DATA_SIZE))
train_data = housing_dataset.sample(frac=0.70, random_state = 19830610)
test_data = housing_dataset[~housing_dataset.index.isin(train_data.index)]
TRAIN_DATA_SIZE = len(train_data)
TEST_DATA_SIZE = len(test_data)
print("Train set size: {}".format(TRAIN_DATA_SIZE))
print("Test set size: {}".format(TEST_DATA_SIZE))
print("")
# Save Training and Test Sets
train_data.to_csv(path_or_buf="data/housing-train-01.csv", header=False, index=False)
test_data.to_csv(path_or_buf="data/housing-test-01.csv", header=False, index=False)
features, target = csv_input_fn(files_name_pattern="")
print("Features in CSV: {}".format(list(features.keys())))
print("Target in CSV: {}".format(target))
feature_columns = get_feature_columns(tf.contrib.training.HParams(num_buckets=5,embedding_size=3))
print("Feature Columns: {}".format(feature_columns))
# Run Experiment:
# Set HParam and RunConfig
TRAIN_SIZE = TRAIN_DATA_SIZE
NUM_EPOCHS = 10000
BATCH_SIZE = 59 #177
EVAL_AFTER_SEC = 30
TOTAL_STEPS = (TRAIN_SIZE/BATCH_SIZE)*NUM_EPOCHS
hparams = tf.contrib.training.HParams(
num_epochs = NUM_EPOCHS,
batch_size = BATCH_SIZE,
gradient_accumulation_multiplier = 3,
hidden_units=[16, 8, 4],
max_steps = TOTAL_STEPS
)
model_dir = 'trained_models/{}'.format(MODEL_NAME)
run_config = tf.estimator.RunConfig(
log_step_count_steps=1000,
tf_random_seed=19830610,
model_dir=model_dir
)
print(hparams)
print("Model Directory:", run_config.model_dir)
print("")
print("Dataset Size:", TRAIN_SIZE)
print("Batch Size:", BATCH_SIZE)
print("Steps per Epoch:",TRAIN_SIZE/BATCH_SIZE)
print("Total Steps:", TOTAL_STEPS)
print("That is 1 evaluation step after each",EVAL_AFTER_SEC," training seconds")
# Define TrainSpec and EvalSpec
train_spec = tf.estimator.TrainSpec(
input_fn = lambda: csv_input_fn(
TRAIN_DATA_FILES_PATTERN,
mode = tf.estimator.ModeKeys.TRAIN,
num_epochs=hparams.num_epochs,
batch_size=hparams.batch_size
),
max_steps=hparams.max_steps,
hooks=None
)
eval_spec = tf.estimator.EvalSpec(
input_fn = lambda: csv_input_fn(
TRAIN_DATA_FILES_PATTERN,
mode=tf.estimator.ModeKeys.EVAL,
num_epochs=1,
batch_size=hparams.batch_size,
),
throttle_secs = EVAL_AFTER_SEC,
steps=None
)
# Run Experiment via train_and_evaluate
if not RESUME_TRAINING:
print("Removing previous artifacts...")
shutil.rmtree(model_dir, ignore_errors=True)
else:
print("Resuming training...")
tf.logging.set_verbosity(tf.logging.INFO)
time_start = datetime.utcnow()
print("Experiment started at {}".format(time_start.strftime("%H:%M:%S")))
print(".......................................")
estimator = create_estimator(run_config, hparams)
tf.estimator.train_and_evaluate(
estimator=estimator,
train_spec=train_spec,
eval_spec=eval_spec
)
time_end = datetime.utcnow()
print(".......................................")
print("Experiment finished at {}".format(time_end.strftime("%H:%M:%S")))
print("")
time_elapsed = time_end - time_start
print("Experiment elapsed time: {} seconds".format(time_elapsed.total_seconds()))
# Evaluate the Model
train_input_fn = lambda: csv_input_fn(files_name_pattern= TRAIN_DATA_FILES_PATTERN,
mode= tf.estimator.ModeKeys.EVAL,
batch_size= TRAIN_DATA_SIZE)
test_input_fn = lambda: csv_input_fn(files_name_pattern= TEST_DATA_FILES_PATTERN,
mode= tf.estimator.ModeKeys.EVAL,
batch_size= TEST_DATA_SIZE)
estimator = create_estimator(run_config, hparams)
train_results = estimator.evaluate(input_fn=train_input_fn, steps=1)
train_rmse = round(math.sqrt(train_results["rmse"]),5)
print()
print("############################################################################################")
print("# Train RMSE: {} - {}".format(train_rmse, train_results))
print("############################################################################################")
test_results = estimator.evaluate(input_fn=test_input_fn, steps=1)
test_rmse = round(math.sqrt(test_results["rmse"]),5)
print()
print("############################################################################################")
print("# Test RMSE: {} - {}".format(test_rmse, test_results))
print("############################################################################################")
# Prediction
print("############################################################################################")
print("PREDICTIONS")
predict_input_fn = lambda: csv_input_fn(files_name_pattern= TEST_DATA_FILES_PATTERN,
mode= tf.estimator.ModeKeys.PREDICT,
batch_size= 5)
predictions = estimator.predict(input_fn=predict_input_fn)
values = list(map(lambda item: item["predictions"][0],list(itertools.islice(predictions, 5))))
print()
print("Predicted Values: {}".format(values))