-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTestIntSTProbCovk.m
86 lines (69 loc) · 2.37 KB
/
TestIntSTProbCovk.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
% Calculates k-coverage probability for a single-tier cellular network
% with log-normal shadowing based on a Poisson model outlined in [1]
% For SIR results (ie noise N=0) results are scale-invariant (independent
% of lambda)
% A variation of this code was used to produce Figures 1 and 2 in [2]
% Author: H.P. Keeler, Inria Paris/ENS, 2014
%
% References:
% [1] H.P. Keeler, B. Błaszczyszyn and M. Karray,
% 'SINR-based coverage probability in cellular networks with arbitrary
% shadowing', ISIT, 2013
% [2] B. Błaszczyszyn and H.P. Keeler, 'Studying the SINR process in
% Poisson networks by using its factorial moment measures', submitted,
% 2013
% [3] Błaszczyszyn and H.P. Keeler, 'Equivalence and comparison of random
% heterogeneous networks', presented at WDN-CN, 2013
% [4] Dhillon, Ganti, Adnrews, Baccelli, 'Modeling and analysis of K-tier
% downlink heterogeneous cellular networks', JSAC, 2012
%
% NOTE: If you use this code in published work, please cite paper[2] by
% Błaszczyszyn and Keeler, as listed above.
clear all; close all; clc;
lambda=1; %base station density
%Power terms
P=1;
betaConst=3; %path-loss exponent
K=P.^(-betaConst);
%log normal parameters
sigmDb=10;
sigma=sigmDb/10*log(10);
ESTwoBeta=exp(sigma^2*(2-betaConst)/betaConst^2);
%model constant - incorporates model parameters
a=lambda*pi*ESTwoBeta/K^2; %equation (6) in [1]
x=W*a^(-betaConst/2); %this constant represents all the network parameters except the path-loss exponent
%noise parameters
N=0;10^(-96/10)/1000;
P=10^(62.2/10)/1000;
W=N/P;
%SINR threshold values
tMinDb=-10;tMaxDb=4;
tValuesDb=(tMinDb:tMaxDb)'; %values in dB
tValues=10.^(tValuesDb/10);
tNumb=length(tValues);
k=1; %coverage number
%analytic/integration section
numbMC=10^3;
PCov1=funProbCov(tValues,betaConst,x,numbMC,k);
k=2; %coverage number
PCov2=funProbCov(tValues,betaConst,x,numbMC,k);
k=3; %coverage number
PCov3=funProbCov(tValues,betaConst,x,numbMC,k);
%plotting section
Pn1=1-PCov1;
Pn2=1-PCov2;
Pn3=1-PCov3;
%create suitable label
if W==0
legendLabel='SIR';
else
legendLabel='SINR';
end
figure;
set(gcf,'DefaultLineLineWidth',2);
set(gca, 'FontSize', 14);
plot(tValuesDb,PCov1,'-o',tValuesDb,PCov2,tValuesDb,PCov3,'-x');grid;
legend('k=1','k=2','k=3','Location','NorthEast');
xlabel('$\tau (dB)$','Interpreter','latex');
ylabel('$\mathcal{P}^{(k)}(\tau)$','Interpreter','latex');
axis([tValuesDb(1),tValuesDb(end),0,1]);