-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathRun_all_compare_time.py
160 lines (136 loc) · 6.71 KB
/
Run_all_compare_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import cv2
import time
import numpy as np
from yoloface_detect_align_module import yoloface
from ultraface_detect_module import ultraface
from ssdface_detect_module import ssdface
from retinaface_detect_align_module import retinaface, retinaface_dnn
from mtcnn_pfld_landmark import mtcnn_detect as mtcnnface
from facebox_detect_module import facebox_pytorch as facebox
from facebox_detect_module import facebox_dnn
from dbface_detect_align_module import dbface_detect as dbface
from centerface_detect_align_module import centerface
from lffd_detect_module import lffdface
from libfacedetect_align_module import libfacedet
import matplotlib.pyplot as plt
import inspect
import argparse
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--imgpath', type=str, default='s_l.jpg', help='Path to image file.')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
align = False
yoloface_detect = yoloface(device=device, align=align)
ultraface_detect = ultraface()
ssdface_detect = ssdface()
retinaface_detect = retinaface(device=device, align=align)
retinaface_dnn_detect = retinaface_dnn(align=align)
mtcnn_detect = mtcnnface(device=device, align=align)
facebox_detect = facebox(device=device)
facebox_dnn_detect = facebox_dnn()
dbface_detect = dbface(device=device, align=align)
centerface_detect = centerface(align=align)
lffdface_detect = lffdface(version=1)
libface_detect = libfacedet(align=align)
srcimg = cv2.imread(args.imgpath)
a = time.time()
yolo_result, _ = yoloface_detect.detect(srcimg)
b = time.time()
yolo_time = round(b - a,3)
cv2.putText(yolo_result, 'yoloface waste time:'+str(yolo_time), (20,40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
ultraface_result, _ = ultraface_detect.detect(srcimg)
b = time.time()
ultraface_time = round(b - a,3)
cv2.putText(ultraface_result, 'ultraface waste time:' + str(ultraface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
ssdface_result, _ = ssdface_detect.detect(srcimg)
b = time.time()
ssdface_time = round(b - a, 3)
cv2.putText(ssdface_result, 'ssdface waste time:' + str(ssdface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
retinaface_result, _ = retinaface_detect.detect(srcimg)
b = time.time()
retinaface_time = round(b - a, 3)
cv2.putText(retinaface_result, 'retinaface waste time:' + str(retinaface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
retinaface_dnn_result, _ = retinaface_dnn_detect.detect(srcimg)
b = time.time()
retinaface_dnn_time = round(b - a, 3)
cv2.putText(retinaface_dnn_result, 'retinaface_dnn waste time:' + str(retinaface_dnn_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
mtcnn_result, _ = mtcnn_detect.detect(srcimg)
b = time.time()
mtcnn_time = round(b - a, 3)
cv2.putText(mtcnn_result, 'mtcnn waste time:' + str(mtcnn_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
facebox_result, _ = facebox_detect.detect(srcimg)
b = time.time()
facebox_time = round(b - a, 3)
cv2.putText(facebox_result, 'facebox waste time:' + str(facebox_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
facebox_dnn_result, _ = facebox_dnn_detect.detect(srcimg)
b = time.time()
facebox_dnn_time = round(b - a, 3)
cv2.putText(facebox_dnn_result, 'facebox_dnn waste time:' + str(facebox_dnn_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1,(0, 0, 255))
a = time.time()
dbface_result, _ = dbface_detect.detect(srcimg)
b = time.time()
dbface_time = round(b - a, 3)
cv2.putText(dbface_result, 'dbface waste time:' + str(dbface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
centerface_result, _ = centerface_detect.detect(srcimg)
b = time.time()
centerface_time = round(b - a, 3)
cv2.putText(centerface_result, 'centerface waste time:' + str(centerface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
lffdface_result, _ = lffdface_detect.detect(srcimg)
b = time.time()
lffdface_time = round(b - a, 3)
cv2.putText(lffdface_result, 'lffdface waste time:' + str(lffdface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
a = time.time()
libface_result, _ = libface_detect.detect(srcimg)
b = time.time()
libface_time = round(b - a, 3)
cv2.putText(libface_result, 'libface waste time:' + str(libface_time), (20, 40), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
results = (yolo_result, ultraface_result, ssdface_result, retinaface_result, retinaface_dnn_result, mtcnn_result,
facebox_result, facebox_dnn_result, dbface_result, centerface_result, lffdface_result, libface_result)
waste_times = (
yolo_time, ultraface_time, ssdface_time, retinaface_time, retinaface_dnn_time, mtcnn_time, facebox_time,
facebox_dnn_time, dbface_time, centerface_time, lffdface_time, libface_time)
line1 = np.hstack(results[:4])
line2 = np.hstack(results[4:8])
line3 = np.hstack(results[8:])
combined = np.vstack([line1, line2, line3])
cv2.namedWindow('detect-combined', cv2.WINDOW_NORMAL)
cv2.imshow('detect-combined', combined)
cv2.imwrite('combined_out.jpg', combined)
# cv2.imwrite('line1.jpg', line1)
# cv2.imwrite('line2.jpg', line2)
# cv2.imwrite('line3.jpg', line3)
for i,res in enumerate(results):
winname = retrieve_name(res)[0]
cv2.namedWindow(winname, cv2.WINDOW_NORMAL)
cv2.imshow(winname, res)
labels = []
for data in waste_times:
labels.append(retrieve_name(data)[0].replace('_time', ''))
plt.rcParams['font.family'] = 'SimHei'
x = list(range(len(waste_times)))
plt.bar(x, waste_times, width=0.5, color='red', label='耗时比较', tick_label=labels)
# for a, b in zip(x, waste_times):
# plt.text(a, b + 0.05, '%.0f' % b, ha='center', va='bottom', fontsize=10) # 添加数据标签
plt.xlabel("模型")
plt.ylabel("时间")
# plt.barh(labels, left=0, height=0.5, width=waste_times, label='耗时比较', color='red')
# plt.ylabel("模型")
# plt.xlabel("时间")
plt.legend()
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()