-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
112 lines (92 loc) · 5.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import cv2
import argparse
import numpy as np
import os
print(cv2.__version__)
class HybridNets():
def __init__(self, modelpath, anchorpath, confThreshold=0.5, nmsThreshold=0.5):
self.det_classes = ["car"]
self.seg_classes = ["Background", "Lane", "Line"]
self.net = cv2.dnn.readNet(modelpath)
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
h, w = os.path.basename(modelpath).split('_')[-1].replace('.onnx', '').split('x')
self.inpHeight, self.inpWidth = int(h), int(w)
self.mean_ = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape((1, 1, 3))
self.std_ = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape((1, 1, 3))
self.anchors = np.load(anchorpath) ### cx_cy_w_h
def resize_image(self, srcimg, keep_ratio=True):
padh, padw, newh, neww = 0, 0, self.inpWidth, self.inpHeight
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_LINEAR)
padw = int((self.inpWidth - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, padw, self.inpWidth - neww - padw, cv2.BORDER_CONSTANT,
value=(114, 114, 114)) # add border
else:
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_LINEAR)
padh = int((self.inpHeight - newh) * 0.5)
img = cv2.copyMakeBorder(img, padh, self.inpHeight - newh - padh, 0, 0, cv2.BORDER_CONSTANT,
value=(114, 114, 114))
else:
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_LINEAR)
return img, newh, neww, padh, padw
def detect(self, srcimg):
img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
scale_h, scale_w = srcimg.shape[0] / newh, srcimg.shape[1] / neww
img = (img.astype(np.float32) / 255.0 - self.mean_) / self.std_
# Sets the input to the network
blob = cv2.dnn.blobFromImage(img)
self.net.setInput(blob)
classification, box_regression, seg = self.net.forward(self.net.getUnconnectedOutLayersNames())
x_centers = box_regression[..., 1] * self.anchors[..., 2] + self.anchors[..., 0]
y_centers = box_regression[..., 0] * self.anchors[..., 3] + self.anchors[..., 1]
w = np.exp(box_regression[..., 3]) * self.anchors[..., 2]
h = np.exp(box_regression[..., 2]) * self.anchors[..., 3]
xmin = x_centers - w * 0.5
ymin = y_centers - h * 0.5
bboxes_wh = np.stack([xmin, ymin, w, h], axis=2).squeeze(axis=0)
confidences = np.max(classification.squeeze(axis=0), axis=1) ####max_class_confidence
classIds = np.argmax(classification.squeeze(axis=0), axis=1)
mask = confidences > self.confThreshold
bboxes_wh = bboxes_wh[mask]
confidences = confidences[mask]
classIds = classIds[mask]
bboxes_wh -= np.array([[padw, padh, 0, 0]]) ### 还原回到原图, 合理使用广播法则
bboxes_wh *= np.array([[scale_w, scale_h, scale_w, scale_h]])
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.confThreshold,
self.nmsThreshold).flatten().tolist()
drive_area_mask = np.squeeze(seg, axis=0)[:, padh:(self.inpHeight - padh), padw:(self.inpWidth - padw)]
seg_id = np.argmax(drive_area_mask, axis=0).astype(np.uint8)
seg_id = cv2.resize(seg_id, (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
# drive_area_mask = cv2.resize(np.transpose(drive_area_mask, (1,2,0)), (srcimg.shape[1], srcimg.shape[0]), interpolation=cv2.INTER_NEAREST)
# seg_id = np.argmax(drive_area_mask, axis=2).astype(np.uint8)
outimg = srcimg.copy()
for ind in indices:
x, y, w, h = bboxes_wh[ind,:].astype(int)
cv2.rectangle(outimg, (x, y), (x + w, y + h), (0, 0, 255), thickness=2, lineType=cv2.LINE_AA)
cv2.putText(outimg, self.det_classes[classIds[ind]]+ ":" + str(round(confidences[ind], 2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255),
thickness=1, lineType=cv2.LINE_AA)
outimg[seg_id == 1] = [0, 255, 0]
outimg[seg_id == 2] = [255, 0, 0]
return outimg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--imgpath', type=str, default='images/test.jpg', help="image path")
parser.add_argument('--modelpath', type=str, default='weights/hybridnets_256x384/hybridnets_256x384.onnx')
parser.add_argument('--anchorpath', type=str, default='weights/hybridnets_256x384/anchors_256x384.npy')
parser.add_argument('--confThreshold', default=0.3, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
args = parser.parse_args()
yolonet = HybridNets(args.modelpath, args.anchorpath, confThreshold=args.confThreshold,
nmsThreshold=args.nmsThreshold)
srcimg = cv2.imread(args.imgpath)
srcimg = yolonet.detect(srcimg)
winName = 'Deep learning object detection use OpenCV'
cv2.namedWindow(winName, 0)
cv2.imshow(winName, srcimg)
cv2.waitKey(0)
cv2.destroyAllWindows()