-
Notifications
You must be signed in to change notification settings - Fork 0
Framework introduction – Bachelor's theses
As is the custom at the HPI, each of the six original students that worked on the project wrote their respective bachelor's thesis on a topic related to the project work.
All of these theses offer in-depth information of a specific topic related to the project.
By: Nick Bessin (@SinNeax)
Language: German
German Title: Der Marktplatz der Zukunft: Simulation von Marktprozessen im Re-Commerce
Abstract:
to be inserted when complete
Links:
to be inserted when complete
By: Leonard Dreeßen (@ldreessen)
Language: German
German Title: Preisfindung in der Recommerce-Domäne: Analyse von Preisstrategien mithilfe einer Online-Marktsimulation
Abstract:
to be inserted when complete
Links:
to be inserted when complete
By: Jan Niklas Groeneveld (@jannikgro)
Language: German
German Title: Ein Vergleich von Reinforcement-Learning-Algorithmen für die dynamische Preisgestaltung auf Recommerce-Märkten
Abstract:
to be inserted when complete
Links:
to be inserted when complete
By: Judith Herrmann (@felix-20)
Language: German
German Title: Skalierbares Lernen in der Cloud
Abstract (German):
Cloud Umgebungen gewinnen immer mehr an Bedeutung. Gerade im Bereich des Machine Learnings bieten sie die Möglichkeit den Lernprozess effizienter zu gestalten. Die bessere Hardware, die einfache und andauernde Verfügbarkeit macht diese entfernten Rechner für moderne Systeme unverzichtbar. Von großen Anbietern wird oft eine Komplettlösung verkauft, die alle Werkzeuge beinhaltet, die für Forschende zum Arbeiten notwendig sind. Dabei sind jedoch nur einige wenige auf Reinforcement Learning spezialisiert. In dieser Arbeit wird eine Cloud Architektur vorgestellt, mit der Reinforcement Learning Agenten trainiert werden können. Sie basiert auf einer Marktsimulation, in der diese eine möglichst optimale Preisstrategien lernen sollen. Die Anforderungen und die Umsetzungen werden thematisiert. Außerdem wird die Skalierbarkeit der Architektur anhand durchgeführter Experimente mit der Marktsimulation gezeigt werden.
Links:
to be inserted when complete
By: Nikkel Mollenhauer (@NikkelM)
Language: English
Abstract:
Sustainable recommerce markets are growing faster than ever. In such markets, customers are incentivised to resell their used products to businesses, which then refurbish and sell them again on the secondary market. However, businesses now face the challenge of having to set three different prices for the same item: One price for the new item, one for its refurbished version and the price at which items are bought back from customers. Since these prices are heavily influenced by each other, traditional pricing methods become less effective. To solve this dynamic pricing problem, a simulation framework was built which can be used to train artificial vendors to set optimised prices using Reinforcement learning algorithms. Before employing these trained agents on real markets, their fitness must be monitored and evaluated, as prices that are too high or too low can lead to high costs for the business. This thesis introduces a number of ways that such dynamic pricing agents can be monitored. We come to the conclusion that it is best to use a wide range of tools when evaluating different aspects of an agent’s performance, from running large-scale simulations to monitoring small policy changes following shifting market states.
Links:
Download link
Github repository
By: Johann Schulze Tast (@blackjack2693)
Language: German
German Title: Vortrainieren RL-basierter Preisfindungsagenten für Recommerce mit geammelten Marktdaten
Abstract:
to be inserted when complete
Links:
to be inserted when complete
Online Marketplace Simulation: A Testbed for Self-Learning Agents is the 2021/2022 bachelor's project of the Enterprise Platform and Integration Concepts (@hpi-epic, epic.hpi.de) research group of the Hasso Plattner Institute.