-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
176 lines (154 loc) · 6.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import sys
import time
import torch
import torch.nn as nn
from torch.utils.data import random_split
from torch.utils.data import DataLoader
from multiprocessing import freeze_support
from models.convnext_model import convnext_model
from models.efficientnetb4_model import efficientnetb4_model
from data import ChristmasImages
from func import get_device, get_output_folder
import argparse
def main():
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.path.join(output_path,'runs/'))
#Extracting data
data_path = "./data/train_val"
dataset = ChristmasImages(data_path, training = True)
print(f"No of Images available in data are: {len(dataset)}")
#split the available data to validation and training
val_data_size = int(args.valtrainsplit * len(dataset))
train_data_size = (len(dataset) - val_data_size)
#randomly split the data
train_data, val_data = random_split(dataset,[train_data_size,val_data_size])
print(f"Number of Images used for training: {len(train_data)}")
print(f"Number of Images used for Validation: {len(val_data)}")
#data loader for training and validation
train_dl = DataLoader(train_data, batch_size = args.trainbatchsize, shuffle = False, num_workers = 4, pin_memory = True)
val_dl = DataLoader(val_data, batch_size = args.valbatchsize, shuffle = False, num_workers = 4, pin_memory = True)
if args.model == "convnext":
model = convnext_model()
elif args.model == "efficientnetb4":
model = efficientnetb4_model()
device = get_device()
optimizer = torch.optim.AdamW(model.parameters(), lr = args.learningrate, weight_decay = args.weightdecay)
loss_function = nn.CrossEntropyLoss()
best_val_acc = 0
for epoch in range(args.epochs):
total_train_loss = 0
train_correct = 0
train_total = 0
time_start = time.time()
model.to(device)
# Training step
model.train()
for data, target in train_dl:
data = data.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(data)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
total_train_loss += loss.item()
_, predicted = torch.max(output.data, 1)
train_total += target.size(0)
train_correct += (predicted == target).sum().item()
train_acc = train_correct / train_total
train_loss = total_train_loss / len(train_dl)
# Evaluation step
with torch.no_grad():
model.eval()
total_val_loss = 0
val_correct = 0
val_total = 0
for data, target in val_dl:
data = data.to(device)
target = target.to(device)
output = model(data)
val_loss = loss_function(output, target)
total_val_loss += val_loss.item()
_, predicted = torch.max(output.data, 1)
val_total += target.size(0)
val_correct += (predicted == target).sum().item()
val_acc = val_correct / val_total
val_loss = total_val_loss / len(val_dl)
if val_acc>best_val_acc:
model.to('cpu')
best_val_acc = val_acc
best_weights = model.state_dict()
path = os.path.join(output_path, 'best_model')
torch.save(best_weights, path)
writer.add_scalars("loss_graphs",{"Loss/train" : train_loss,"Loss/val" : val_loss}, epoch)
writer.add_scalars("accuracy_graphs",{"accuracy/train" : train_acc, "accuracy/val" : val_acc}, epoch)
time_end = time.time()
time_elapsed = time_end - time_start
print("Time_elapsed for Epoch [{}] : [{:.2f}] s".format(epoch+1,time_elapsed))
print(f'Training Loss: {train_loss:.4f} | Train Acc: {100*train_acc:.4f}')
print(f'Validation Loss: {val_loss:.4f} | Validation Acc: {100*val_acc:.4f} | Best Validation Acc: {100*best_val_acc:.4f}')
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#model
parser.add_argument("-m",
"--model",
type = str,
default= 'efficientnetb4',
choices = ['convnext','efficientnetb4'],
help="choice of model",
)
parser.add_argument("-vts",
"--valtrainsplit",
type=float,
default=0.15,
help="validation and train data split",
)
parser.add_argument("-tbs",
"--trainbatchsize",
type=int,
default= 4,
help="batch size for train dataloader",
)
parser.add_argument("-vbs",
"--valbatchsize",
type=int,
default= 4,
help="batch size for validation dataloader",
)
parser.add_argument("-e",
"--epochs",
type=int,
default= 5,
help="no of epochs",
)
parser.add_argument("-lr",
"--learningrate",
type=float,
default= 0.001,
help="learning rate",
)
parser.add_argument("-wd",
"--weightdecay",
type=float,
default= 0.0001,
help="weight decay",
)
args = parser.parse_args()
base_path = "./outputs/"
os.makedirs(base_path, exist_ok=True)
output_path = get_output_folder(base_path)
print(output_path)
config_file_path = os.path.join(output_path, "configuration.txt")
with open(config_file_path, "w") as file:
file.write("model: {}\n".format(args.model))
file.write("val train split: {}\n".format(args.valtrainsplit))
file.write("Epochs: {}\n".format(args.epochs))
file.write("Learning Rate: {}\n".format(args.learningrate))
file.write("train batch size: {}\n".format(args.trainbatchsize))
file.write("validation batch size: {}\n".format(args.valbatchsize))
file.write("weight decay: {}\n".format(args.weightdecay))
terminal_output_file = os.path.join(output_path, "terminal_output.txt")
sys.stdout = open(terminal_output_file, "w")
main()