-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneocortix_locust.py
129 lines (106 loc) · 5.27 KB
/
neocortix_locust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
import os
import re
import numpy as np
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
'''
This function filters out all the rows for which the label column does not match a given value (i.e GetDistribution).
And saves "elapsed", "responsecode" & "timestamp" value for rows that do match the specified label text(transaction name) into a csv.
'''
outputDir= './sample/locust/locust_test'
def find_files():
resultFiles = []
for root, dirs, files in os.walk(outputDir, topdown=False):
for name in files:
if name.endswith("_results_good.csv"):
Path = os.path.join(root, name)
m = re.search(r'worker_(.+?)_results_good.*$', str(Path))
resultFiles.append({'fileNumber': str(m.group(1)), 'filePath': Path})
return resultFiles
def extract_data(resultFiles):
FILE_TO_WRITE ="./sample/locust/merged.csv"
lookup_df = pd.read_csv('./sample/locust/mapConfig.csv')
if os.path.exists(FILE_TO_WRITE):
os.remove(FILE_TO_WRITE)
df=pd.DataFrame(columns=['timestamp','method','elapsed','URL','Location'])
df.to_csv(FILE_TO_WRITE, mode='a', header=["timeStamp", "method", "elapsed","URL", "Location"], index = False)
for files in resultFiles:
y = lookup_df.loc[lookup_df[' Filename'].str.contains(files['fileNumber'])][' Region']
y = y.values.tolist()
df = pd.read_csv(files['filePath'], usecols = ['timeStamp','method','elapsed','URL'])
df['Location']=y[0]
df.to_csv(FILE_TO_WRITE, mode='a', index = False, header=False)
def generate_graphs():
FILE = "./sample/locust/merged.csv" #replace with your file name
try:
df = pd.read_csv(FILE, dtype={'Location':'str'}) # read the file
df['timeStamp'] = df['timeStamp']*1000
'''
This code generates the percentile graph
'''
#base subplot setup
res = df.pivot(columns='Location', values='elapsed')
fig, axes = plt.subplots(2, 2, figsize=(16, 8), sharey=False) # set 2x2 plots
fig.patch.set_facecolor('#bbe5f9')
plt.subplots_adjust(hspace = 0.4)
color = {' USA':'#0000FF',' Russia':'#FF0000',' Other':'#00FF00' }
#generate scatterplot for elapsed time
ax = sns.scatterplot(ax=axes[0,0], data=df,x=df['timeStamp'],y=df['elapsed'], hue=df['Location'], s=7,palette=color, legend=True ) #legend=True
ax.set(ylim=(0,3000))
xticks = ax.get_xticks()
ax.set_xticklabels([pd.to_datetime(tm, unit='ms').strftime('%d/%m/%y\n%H:%M:%S') for tm in xticks], rotation = 45) #, rotation = 45
ax.legend(fontsize='medium')
ax.set_title('Response Time Over Time')
ax.set_xlabel('Time')
ax.set_ylabel('Response Time (ms)')
#generate response time distribuiton graph
kwargs = dict(element='step',shrink=.8, alpha=0.3, fill=True, legend=True, palette=color) #, palette=color
ax = sns.histplot(ax=axes[0, 1], data=res,**kwargs)
ax.set(xlim=(0,3000))
ax.legend([' USA',' Russia', ' Other']).set_title('')
ax.set_title('Response Time Distribution')
ax.set_xlabel('Response Time (ms)')
ax.set_ylabel('Frequency')
#Generate percentile distribution
summary = np.round(res.describe(percentiles=[0.0, 0.1, 0.2,
0.3, 0.4, 0.5,
0.6, 0.7, 0.8,
0.9, 0.95, 0.99, 1]),2) # add 1 in the percentile
dropping = ['count', 'mean', 'std', 'min','max'] #remove metrics not needed for percentile graph
for drop in dropping:
summary = summary.drop(drop)
ax = sns.lineplot(ax=axes[1, 1],data=summary,dashes=False, legend=True,palette=color) #palette=color,
ax.legend(fontsize='medium')
ax.set(ylim=(0,3000))
ax.set_title('Percentile Distribution')
ax.set_xlabel('Percentile')
ax.set_ylabel('Response Time (ms)')
#Basic statistics
axes[1, 0].axis("off")
df['loc_url'] = df['Location'].astype(str) +'_'+ df['URL']
res = df.pivot(columns='loc_url', values='elapsed')
full_summary = np.round(res.describe(percentiles=[0.25,0.5,0.75,0.90,0.95],include='all'),2)# show basic statistics as in row
table_result = axes[1, 0].table(cellText=full_summary.values,
rowLabels=full_summary.index,
colLabels=full_summary.columns,
rowColours =["#bbe5f9"] * 10, #xkcd:mint green
colColours =["#bbe5f9"] * 10, #palegreen
cellLoc = 'right', rowLoc = 'center',
loc='upper center')
table_result.auto_set_font_size(False)
table_result.set_fontsize(8)
axes[1, 0].set_title('Response Time Statistics')
fig.tight_layout(pad=1)
plt.savefig('./sample/locust/graphs.png',facecolor=fig.get_facecolor(), edgecolor='none')
except Exception as e:
raise e
def main():
resultFiles = find_files()
extract_data(resultFiles)
generate_graphs()
if __name__ == "__main__":
main()