-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcohesion_graph.py
368 lines (342 loc) · 15.5 KB
/
cohesion_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#!/usr/bin/env python2
# -*- coding:utf-8 -*-
'''Cohesion graph-based classifier for PIE sense disambiguation'''
import re
import os
import numpy
import time
import spacy
import en_core_web_md as spacy_model
import copy
from scipy.spatial.distance import cosine as cosine_distance
from definitions import definition_mapping # Dictionary of idiom defintions
# Global variables to capture some dataset-level descriptive statistics
num_empty_graphs = 0 # Number of 'graphs' without edges
num_no_context_graphs = 0 # Number of graphs without context words
num_no_pie_graphs = 0 # Number of graphs without component words
total_similarity_difference = 0.0
backoff_counter = [0,0] # Literal empty, figurative empty
class Edge:
'Class for edges of the graph'
def __init__(self, words, in_PIE):
self.words = words # Tuple of words connected by the edge
self.in_PIE = in_PIE # Is this edge connected to a PIE component word?
self.similarity = None # Similarity between the words, i.e. the edge weight
def __str__(self):
return str(self.__dict__)
def cohesion_graph(data, use_test_data, embeddings_dir, graph_size, graph_pos, graph_pie, graph_set, graph_lemma, graph_glove, graph_intra, graph_type, graph_definitions):
'''
Construct cohesion graphs for each PIE and predict sense labels
'''
# Descriptive statistics
global num_empty_graphs, num_no_pie_graphs, num_no_context_graphs, total_similarity_difference, backoff_counter
# Load PoS-tagger
print 'Loading PoS-tagger...'
time_0 = time.time()
pos_tagger = spacy_model.load(disable = ['ner', 'parser'])
print 'Done! Took {0:.2f} seconds'.format(time.time() - time_0)
# Load embeddings
print 'Loading embeddings...'
time_0 = time.time()
embeddings = {}
embeddings_file = 'glove.6B.{0}d.txt'.format(graph_glove)
if graph_glove == 840:
embeddings_file = 'glove.840B.300d.txt'
with open(os.path.join(embeddings_dir, embeddings_file)) as f:
for line in f:
split = line.strip().split(' ')
word = unicode(split[0], 'utf-8')
embedding = numpy.array([float(n) for n in split[1:]])
embeddings[word] = embedding
# For unknown words, take average of all embeddings
embeddings['UNK'] = numpy.mean(numpy.array(embeddings.values()), axis = 0)
print 'Done! Took {0:.2f} seconds'.format(time.time() - time_0)
# For each PIE, construct the graph and predict the label
print 'Constructing graphs and predicting labels...'
# Keep track of words occurring in graphs
words = []
time_0 = time.time()
for PIE in data:
if (use_test_data and PIE.split == 'test') or (not use_test_data and PIE.split == 'dev'):
# Use literalisations
if graph_definitions:
# Create regular graph
graph_literal = construct_graph(PIE, pos_tagger, graph_size, graph_pos, graph_pie, graph_set, graph_lemma, graph_intra, graph_definitions)
words += list(set([item for sublist in [x.words for x in graph_literal] for item in sublist]))
graph_literal = weight_graph(graph_literal, embeddings)
# Create PIE where PIE is replaced by its figurative sense definition, and a graph of that
PIE_figurative = modify_PIE(PIE, definition_mapping)
graph_figurative = construct_graph(PIE_figurative, pos_tagger, graph_size, graph_pos, graph_pie, graph_set, graph_lemma, graph_intra, graph_definitions)
words += list(set([item for sublist in [x.words for x in graph_figurative] for item in sublist]))
graph_figurative = weight_graph(graph_figurative, embeddings)
# Use contrasting prediction function
PIE.predicted_label = predict_label_contrast(graph_literal, graph_figurative, graph_type)
else:
graph = construct_graph(PIE, pos_tagger, graph_size, graph_pos, graph_pie, graph_set, graph_lemma, graph_intra, graph_definitions)
words += list(set([item for sublist in [x.words for x in graph] for item in sublist]))
graph = weight_graph(graph, embeddings)
PIE.predicted_label = predict_label(graph, graph_type)
# Count OOV words
words = list(set(words))
oov_counter = sum([word.lower() not in embeddings for word in words])
# Print descriptive statistics
print '\nDone! Took {0:.2f} seconds'.format(time.time() - time_0)
print 'Total number of graphs: {0}'.format(len([x for x in data if x.predicted_label]))
print 'Empty graphs: {0}. No-PIE-graphs: {1}. No-context-graphs: {2}.'.format(num_empty_graphs, num_no_pie_graphs, num_no_context_graphs)
if graph_definitions:
print 'Backoffs: {0} (empty literal), {1} (empty figurative)'.format(backoff_counter[0], backoff_counter[1])
print 'Found {0} words'.format(len(words))
print 'Of which {0} are OOV'.format(oov_counter)
print 'Total similarity difference: {0:.2f}'.format(total_similarity_difference)
return data
def construct_graph(PIE, pos_tagger, graph_size, graph_pos, graph_pie, graph_set, graph_lemma, graph_intra, graph_definitions):
'''
Construct cohesion graph by selecting words to be included,
return list of unweighted Edges
'''
graph = []
PIE_sentence_index = len(PIE.context)/2
# Take right number of sentences for sentence-length contexts
if graph_size == '0s':
context = PIE.context[PIE_sentence_index:PIE_sentence_index + 1]
PIE_sentence_index = 0
elif graph_size[-1] == 's':
num_extra_sentences = int(graph_size[:-1])
context = PIE.context[PIE_sentence_index - num_extra_sentences : PIE_sentence_index + num_extra_sentences + 1]
PIE_sentence_index = num_extra_sentences
# Take all sentences for word-length contexts
elif graph_size[-1] == 'w':
context = PIE.context
# Tag context
tagged_context = pos_tag(pos_tagger, context)
# Find token indices of PIE component words in sentence, using final character offsets
PIE_tokens = []
end_offsets = [offset[1] for offset in PIE.offsets]
# Find the character index of the start of the PIE sentence, while dealing with empty pre-contexts
sentence_start_index = tagged_context[len(' '.join(context[:PIE_sentence_index]).split())].idx
for token in tagged_context:
if token.idx - sentence_start_index + len(token) in end_offsets:
PIE_tokens.append(token.i)
if len(PIE_tokens) != len(PIE.offsets):
# Sometimes (some) PIE tokens are not found, either because of garbage like '\xa3' in the context,
# or because instances are joined by dashes, which then do not turn into tokens.
if not PIE_tokens:
print 'No PIE tokens found, no graph constructed!'
return []
else:
print 'Some PIE tokens not found!'
# Select only certain PoS and optionally always select PIE component words regardless
if graph_pie:
content_tokens = [token for token in tagged_context if token.pos_ in graph_pos or token.i in PIE_tokens]
else:
content_tokens = [token for token in tagged_context if token.pos_ in graph_pos]
# Filter out pronouns (Spacy tags possessive pronouns as adjectives)
content_tokens = [token for token in content_tokens if token.lemma_ != u'-PRON-']
# Filter out placeholder words like someone and something
content_tokens = [token for token in content_tokens if token.lemma not in [u'something', u'someone']]
# Limit number of context tokens, always allow context tokens that occur in-between PIE component words
if graph_size[-1] == 'w':
max_context_tokens = int(graph_size[:-1])
pre_context_tokens = [token for token in content_tokens if token.i < PIE_tokens[0]][-max_context_tokens:]
PIE_context_tokens = [token for token in content_tokens if token.i >= PIE_tokens[0] and token.i <= PIE_tokens[-1]]
post_context_tokens = [token for token in content_tokens if token.i > PIE_tokens[-1]][:max_context_tokens]
context_tokens = pre_context_tokens + PIE_context_tokens + post_context_tokens
else:
context_tokens = content_tokens
# Filter out context words that are duplicates of PIE component words
if graph_set:
context_token_set = []
for token_1 in content_tokens:
context_token_set.append(token_1)
if token_1.i not in PIE_tokens:
for token_2 in content_tokens:
if token_2.i in PIE_tokens:
if (not graph_lemma and token_1.lower_ == token_2.lower_) or (graph_lemma and token_1.lemma_ == token_2.lemma_):
del context_token_set[-1]
break
context_tokens = context_token_set
# Construct graph
for idx_1 in range(len(context_tokens)):
for idx_2 in range(idx_1 + 1, len(context_tokens)):
# Exclude edges between PIE component words
if graph_intra:
if context_tokens[idx_1].i in PIE_tokens and context_tokens[idx_2].i in PIE_tokens:
continue
# Use lemma or tokens to build graph
if graph_lemma:
words = (context_tokens[idx_1].lemma_, context_tokens[idx_2].lemma_)
else:
words = (context_tokens[idx_1].text, context_tokens[idx_2].text)
in_PIE = context_tokens[idx_1].i in PIE_tokens or context_tokens[idx_2].i in PIE_tokens
graph.append(Edge(words, in_PIE))
return graph
def weight_graph(graph, embeddings):
'''
Weight graph edges by similarity between words
'''
for edge in graph:
try:
embedding_0 = embeddings[edge.words[0].lower()]
except KeyError:
embedding_0 = embeddings['UNK']
try:
embedding_1 = embeddings[edge.words[1].lower()]
except KeyError:
embedding_1 = embeddings['UNK']
edge.similarity = 1.0 - cosine_distance(embedding_0, embedding_1)
return graph
def predict_label(graph, graph_type):
'''
Predict label based on connectivity change with and without PIE
'''
# Descriptive statistics
global num_empty_graphs, num_no_pie_graphs, num_no_context_graphs, total_similarity_difference
# If graph is empty (i.e. only 0 or 1 content words in sentence including PIE component words), label idiomatic
if not graph:
num_empty_graphs += 1
return 'i'
# If no PIE component words in the graph, label idiomatic
if not [edge for edge in graph if edge.in_PIE]:
num_no_pie_graphs += 1
return 'i'
# If no context words in the graph, label idiomatic
if not [edge for edge in graph if not edge.in_PIE]:
num_no_context_graphs += 1
return 'i'
# Use original connectivity measure
if graph_type == 'original' or re.match('diff', graph_type):
# Get similarities
avg_similarity_with = numpy.mean([edge.similarity for edge in graph])
avg_similarity_without = numpy.mean([edge.similarity for edge in graph if not edge.in_PIE])
if graph_type == 'original':
# Label is idiomatic when similarity is higher or equal without PIE
if avg_similarity_with >= avg_similarity_without:
total_similarity_difference += (avg_similarity_with - avg_similarity_without)
return 'l'
else:
total_similarity_difference += (avg_similarity_without - avg_similarity_with)
return 'i'
else:
sign = graph_type[4:5]
difference = float(graph_type[5:])
# Label is idiomatic when similarity is higher or equal without PIE, with a minimal difference requirement
if sign == '-':
avg_similarity_without -= difference
elif sign == '+':
avg_similarity_without += difference
if avg_similarity_with >= avg_similarity_without:
return 'l'
else:
return 'i'
# Use only top-N connections between PIE and context words, and between context words
if re.match('top[0-9]+', graph_type):
n = int(graph_type[3:])
top_PIE_similarities = sorted([edge.similarity for edge in graph if edge.in_PIE], reverse = True)[:n]
top_context_similarities = sorted([edge.similarity for edge in graph if not edge.in_PIE], reverse = True)[:n]
# Label is literal when PIE has stronger connections to context than context within itself
if numpy.mean(top_PIE_similarities) >= numpy.mean(top_context_similarities):
return 'l'
else:
return 'i'
def modify_PIE(PIE, definition_mapping):
'''
Take a PIE and replace its component words with its
figurative sense definition and adjust offsets
'''
# Create new PIE
modified_PIE = copy.deepcopy(PIE)
# Get definition
try:
definition = definition_mapping[modified_PIE.pie_type]
except KeyError:
print 'No definition found for PIE {0} '.format(modified_PIE.pie_type.encode('utf-8'))
# Get sentence to modify
sentence_index = len(modified_PIE.context)/2
sentence = modified_PIE.context[sentence_index]
# Remove PIE span and insert sense definition there
initial_offset = modified_PIE.offsets[0][0]
final_offset = modified_PIE.offsets[-1][-1]
modified_sentence = sentence[:initial_offset] + definition + sentence[final_offset:]
# Create new offsets
new_offsets = []
for word in definition.split(' '):
new_offsets.append([initial_offset, initial_offset + len(word)])
initial_offset += len(word) + 1
# Replace originals
modified_PIE.context[sentence_index] = modified_sentence
modified_PIE.offsets = new_offsets
return modified_PIE
def predict_label_contrast(graph_literal, graph_figurative, graph_type):
'''
Predict label based on connectivity in original graph
and graph containing idiom definition
'''
# Descriptive statistics
global num_empty_graphs, num_no_pie_graphs, num_no_context_graphs, total_similarity_difference, backoff_counter
# If graph is empty (i.e. only 0 or 1 content words in sentence including PIE component words), label idiomatic
if not graph_literal or not graph_figurative:
num_empty_graphs += 1
return 'i'
# If no PIE component words in either graph, label idiomatic
# If only one graph is empty, back off to single-graph prediction function, compare with and without
if not [edge for edge in graph_literal if edge.in_PIE] and not [edge for edge in graph_figurative if edge.in_PIE]:
num_no_pie_graphs += 1
return 'i'
elif not [edge for edge in graph_figurative if edge.in_PIE]:
backoff_counter[1] += 1
return predict_label(graph_literal, graph_type)
elif not [edge for edge in graph_literal if edge.in_PIE]:
backoff_counter[0] += 1
# Inverse labels
if predict_label(graph_figurative, graph_type) == 'i':
return 'l'
else:
return 'i'
# If no context words in the graph, label idiomatic
if not [edge for edge in graph_literal if not edge.in_PIE] or not [edge for edge in graph_figurative if not edge.in_PIE]:
num_no_context_graphs += 1
return 'i'
# With two well-formed graphs, compare average similarity (connectivity)
avg_similarity_literal = numpy.mean([edge.similarity for edge in graph_literal])
avg_similarity_figurative = numpy.mean([edge.similarity for edge in graph_figurative])
total_similarity_difference += abs(avg_similarity_figurative - avg_similarity_literal)
if graph_type == 'original':
# Label is idiomatic when connectivity is higher or equal with figurative sense definition
if avg_similarity_figurative >= avg_similarity_literal:
return 'i'
else:
return 'l'
elif re.match('diff', graph_type):
sign = graph_type[4:5]
difference = float(graph_type[5:])
# Label is idiomatic when connectivity is higher or equal with figurative sense definition, with a minimal difference requirement
if sign == '-':
avg_similarity_figurative -= difference
elif sign == '+':
avg_similarity_figurative += difference
if avg_similarity_figurative >= avg_similarity_literal:
return 'i'
else:
return 'l'
def pos_tag(pos_tagger, sentences):
'''
Take list of sentences, return Spacy Doc that preserves
original tokenization and sentence split
'''
# Normalize quotes, ‘ ’ ❛ ❜ to ', and “ ” ❝ ❞ to ", Spacy doesn't process them well
sentences = [re.sub(u'‘|’|❛|❜', u"'", sentence) for sentence in sentences]
sentences = [re.sub(u'“|”|❝|❞', u'"', sentence) for sentence in sentences]
# Find sentence boundaries
sentence_lengths = [len(sentence.split()) for sentence in sentences]
sentence_starts = [sum(sentence_lengths[:i+1]) for i in range(len(sentence_lengths))]
# Make Doc
doc = spacy.tokens.Doc(pos_tagger.vocab, ' '.join(sentences).split())
# Set sentence boundaries
for token in doc:
if token.i in sentence_starts:
token.is_sent_start = True
else:
token.is_sent_start = False
# Do actual tagging
doc = pos_tagger.tagger(doc)
return doc