diff --git a/optimum/intel/neural_compressor/trainer.py b/optimum/intel/neural_compressor/trainer.py index 4360c5abf..4490bf27b 100644 --- a/optimum/intel/neural_compressor/trainer.py +++ b/optimum/intel/neural_compressor/trainer.py @@ -45,7 +45,6 @@ from transformers.debug_utils import DebugOption, DebugUnderflowOverflow from transformers.modeling_utils import PreTrainedModel, get_parameter_dtype, unwrap_model from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES -from transformers.pytorch_utils import is_torch_less_than_1_11 from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer import TRAINER_STATE_NAME from transformers.trainer_callback import TrainerCallback, TrainerState @@ -436,7 +435,7 @@ def _inner_training_loop( if version.parse(accelerate_version) > version.parse("0.23.0"): sampler_kinds.append(SeedableRandomSampler) is_random_sampler = isinstance(sampler, tuple(sampler_kinds)) - if is_torch_less_than_1_11 or not is_random_sampler: + if not is_random_sampler: # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break diff --git a/optimum/intel/openvino/trainer.py b/optimum/intel/openvino/trainer.py index f5badac7b..5c7d39229 100644 --- a/optimum/intel/openvino/trainer.py +++ b/optimum/intel/openvino/trainer.py @@ -63,7 +63,6 @@ from transformers.data.data_collator import DataCollator from transformers.debug_utils import DebugOption, DebugUnderflowOverflow from transformers.modeling_utils import PreTrainedModel, unwrap_model -from transformers.pytorch_utils import is_torch_less_than_1_11 from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer import TRAINER_STATE_NAME, TRAINING_ARGS_NAME from transformers.trainer_callback import TrainerCallback, TrainerState @@ -521,7 +520,7 @@ def _inner_training_loop( if version.parse(accelerate_version) > version.parse("0.23.0"): sampler_kinds.append(SeedableRandomSampler) is_random_sampler = isinstance(sampler, tuple(sampler_kinds)) - if is_torch_less_than_1_11 or not is_random_sampler: + if not is_random_sampler: # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break diff --git a/setup.py b/setup.py index 5c8318247..c54983da4 100644 --- a/setup.py +++ b/setup.py @@ -12,6 +12,7 @@ assert False, "Error: Could not open '%s' due %s\n" % (filepath, error) INSTALL_REQUIRE = [ + "torch>=1.11", "optimum>=1.14.0", "transformers>=4.20.0", "datasets>=1.4.0",