diff --git a/optimum/intel/openvino/modeling_seq2seq.py b/optimum/intel/openvino/modeling_seq2seq.py index fea3e9a05..30ce07425 100644 --- a/optimum/intel/openvino/modeling_seq2seq.py +++ b/optimum/intel/openvino/modeling_seq2seq.py @@ -45,9 +45,7 @@ # and it implements many new features including short and long form generation, and starts with 2 init tokens from transformers.models.whisper.generation_whisper import WhisperGenerationMixin else: - - class WhisperGenerationMixin: - generate = WhisperForConditionalGeneration.generate + WhisperGenerationMixin = WhisperForConditionalGeneration if is_transformers_version(">=", "4.43.0"): diff --git a/tests/openvino/test_modeling.py b/tests/openvino/test_modeling.py index dd6a7f1ce..2a5741739 100644 --- a/tests/openvino/test_modeling.py +++ b/tests/openvino/test_modeling.py @@ -1666,24 +1666,13 @@ def _generate_random_audio_data(self): def test_compare_to_transformers(self, model_arch): set_seed(SEED) model_id = MODEL_NAMES[model_arch] - - if is_transformers_version(">=", "4.37"): - ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True, ov_config=F32_CONFIG) - else: - with self.assertRaises(Exception) as context: - _ = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True, ov_config=F32_CONFIG) - self.assertIn( - "Whisper is not available for this version of Transformers, please upgrade to 4.37.0 or later.", - str(context.exception), - ) - return - - self.assertIsInstance(ov_model.config, PretrainedConfig) transformers_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id) + ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True, ov_config=F32_CONFIG) + self.assertIsInstance(ov_model.config, PretrainedConfig) + processor = get_preprocessor(model_id) data = self._generate_random_audio_data() features = processor.feature_extractor(data, return_tensors="pt") - decoder_start_token_id = transformers_model.config.decoder_start_token_id decoder_inputs = {"decoder_input_ids": torch.ones((1, 1), dtype=torch.long) * decoder_start_token_id} @@ -1711,19 +1700,8 @@ def test_compare_to_transformers(self, model_arch): def test_pipeline(self, model_arch): set_seed(SEED) model_id = MODEL_NAMES[model_arch] + model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True) - if is_transformers_version(">=", "4.37"): - model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True) - else: - with self.assertRaises(Exception) as context: - _ = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True) - self.assertIn( - "Whisper is not available for this version of Transformers, please upgrade to 4.37.0 or later.", - str(context.exception), - ) - return - - model.eval() processor = get_preprocessor(model_id) pipe = pipeline( "automatic-speech-recognition",