diff --git a/docs/source/_toctree.yml b/docs/source/_toctree.yml
index 1fd3fe6b71..d8f8e4a9e6 100644
--- a/docs/source/_toctree.yml
+++ b/docs/source/_toctree.yml
@@ -20,6 +20,13 @@
title: Optimization
- local: openvino/models
title: Supported Models
+ - sections:
+ - local: openvino/tutorials/notebooks
+ title: Notebooks
+ - local: openvino/tutorials/diffusers
+ title: Generate images with Stable Diffusion models
+ title: Tutorials
+ isExpanded: false
- local: openvino/reference
title: Reference
title: OpenVINO
diff --git a/docs/source/openvino/tutorials/diffusers.mdx b/docs/source/openvino/tutorials/diffusers.mdx
new file mode 100644
index 0000000000..10add869e3
--- /dev/null
+++ b/docs/source/openvino/tutorials/diffusers.mdx
@@ -0,0 +1,250 @@
+
+
+# Tutorial
+
+## Stable Diffusion
+
+Stable Diffusion models can also be used when running inference with OpenVINO. When Stable Diffusion models
+are exported to the OpenVINO format, they are decomposed into different components that are later combined during inference:
+- The text encoder
+- The U-NET
+- The VAE encoder
+- The VAE decoder
+
+| Task | Auto Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `OVStableDiffusionPipeline` |
+| `image-to-image` | `OVStableDiffusionImg2ImgPipeline` |
+| `inpaint` | `OVStableDiffusionInpaintPipeline` |
+
+
+### Text-to-Image
+Here is an example of how you can load an OpenVINO Stable Diffusion model and run inference using OpenVINO Runtime:
+
+```python
+from optimum.intel import OVStableDiffusionPipeline
+
+model_id = "echarlaix/stable-diffusion-v1-5-openvino"
+pipeline = OVStableDiffusionPipeline.from_pretrained(model_id)
+prompt = "sailing ship in storm by Rembrandt"
+images = pipeline(prompt).images
+```
+
+To load your PyTorch model and convert it to OpenVINO on the fly, you can set `export=True`.
+
+```python
+model_id = "runwayml/stable-diffusion-v1-5"
+pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
+# Don't forget to save the exported model
+pipeline.save_pretrained("openvino-sd-v1-5")
+```
+
+To further speed up inference, the model can be statically reshaped :
+
+```python
+# Define the shapes related to the inputs and desired outputs
+batch_size = 1
+num_images_per_prompt = 1
+height = 512
+width = 512
+
+# Statically reshape the model
+pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images_per_prompt)
+# Compile the model before the first inference
+pipeline.compile()
+
+# Run inference
+images = pipeline(prompt, height=height, width=width, num_images_per_prompt=num_images_per_prompt).images
+```
+
+In case you want to change any parameters such as the outputs height or width, you'll need to statically reshape your model once again.
+
+
+
+
+
+### Text-to-Image with Textual Inversion
+Here is an example of how you can load an OpenVINO Stable Diffusion model with pre-trained textual inversion embeddings and run inference using OpenVINO Runtime:
+
+
+First, you can run original pipeline without textual inversion
+```python
+from optimum.intel import OVStableDiffusionPipeline
+import numpy as np
+
+model_id = "echarlaix/stable-diffusion-v1-5-openvino"
+prompt = "A back-pack"
+# Set a random seed for better comparison
+np.random.seed(42)
+
+pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=False, compile=False)
+pipeline.compile()
+image1 = pipeline(prompt, num_inference_steps=50).images[0]
+image1.save("stable_diffusion_v1_5_without_textual_inversion.png")
+```
+
+Then, you can load [sd-concepts-library/cat-toy](https://huggingface.co/sd-concepts-library/cat-toy) textual inversion embedding and run pipeline with same prompt again
+```python
+# Reset stable diffusion pipeline
+pipeline.clear_requests()
+
+# Load textual inversion into stable diffusion pipeline
+pipeline.load_textual_inversion("sd-concepts-library/cat-toy", "")
+
+# Compile the model before the first inference
+pipeline.compile()
+image2 = pipeline(prompt, num_inference_steps=50).images[0]
+image2.save("stable_diffusion_v1_5_with_textual_inversion.png")
+```
+The left image shows the generation result of original stable diffusion v1.5, the right image shows the generation result of stable diffusion v1.5 with textual inversion.
+
+| | |
+|---|---|
+| ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/textual_inversion/stable_diffusion_v1_5_without_textual_inversion.png) | ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/textual_inversion/stable_diffusion_v1_5_with_textual_inversion.png) |
+
+
+### Image-to-Image
+
+```python
+import requests
+import torch
+from PIL import Image
+from io import BytesIO
+from optimum.intel import OVStableDiffusionImg2ImgPipeline
+
+model_id = "runwayml/stable-diffusion-v1-5"
+pipeline = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, export=True)
+
+url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
+response = requests.get(url)
+init_image = Image.open(BytesIO(response.content)).convert("RGB")
+init_image = init_image.resize((768, 512))
+prompt = "A fantasy landscape, trending on artstation"
+image = pipeline(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images[0]
+image.save("fantasy_landscape.png")
+```
+
+## Stable Diffusion XL
+
+| Task | Auto Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `OVStableDiffusionXLPipeline` |
+| `image-to-image` | `OVStableDiffusionXLImg2ImgPipeline` |
+
+
+### Text-to-Image
+
+Here is an example of how you can load a SDXL OpenVINO model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and run inference using OpenVINO Runtime:
+
+```python
+from optimum.intel import OVStableDiffusionXLPipeline
+
+model_id = "stabilityai/stable-diffusion-xl-base-1.0"
+base = OVStableDiffusionXLPipeline.from_pretrained(model_id)
+prompt = "train station by Caspar David Friedrich"
+image = base(prompt).images[0]
+image.save("train_station.png")
+```
+
+| | |
+|---|---|
+| ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/train_station_friedrich.png) | ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/train_station_friedrich_2.png) |
+
+### Text-to-Image with Textual Inversion
+
+Here is an example of how you can load an SDXL OpenVINO model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) with pre-trained textual inversion embeddings and run inference using OpenVINO Runtime:
+
+
+First, you can run original pipeline without textual inversion
+```python
+from optimum.intel import OVStableDiffusionXLPipeline
+import numpy as np
+
+model_id = "stabilityai/stable-diffusion-xl-base-1.0"
+prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround wearing a red jacket and black shirt, best quality, intricate details."
+# Set a random seed for better comparison
+np.random.seed(112)
+
+base = OVStableDiffusionXLPipeline.from_pretrained(model_id, export=False, compile=False)
+base.compile()
+image1 = base(prompt, num_inference_steps=50).images[0]
+image1.save("sdxl_without_textual_inversion.png")
+```
+
+Then, you can load [charturnerv2](https://civitai.com/models/3036/charturner-character-turnaround-helper-for-15-and-21) textual inversion embedding and run pipeline with same prompt again
+```python
+# Reset stable diffusion pipeline
+base.clear_requests()
+
+# Load textual inversion into stable diffusion pipeline
+base.load_textual_inversion("./charturnerv2.pt", "charturnerv2")
+
+# Compile the model before the first inference
+base.compile()
+image2 = base(prompt, num_inference_steps=50).images[0]
+image2.save("sdxl_with_textual_inversion.png")
+```
+
+### Image-to-Image
+
+Here is an example of how you can load a PyTorch SDXL model, convert it to OpenVINO on-the-fly and run inference using OpenVINO Runtime for *image-to-image*:
+
+```python
+from optimum.intel import OVStableDiffusionXLImg2ImgPipeline
+from diffusers.utils import load_image
+
+model_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
+pipeline = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_id, export=True)
+
+url = "https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/castle_friedrich.png"
+image = load_image(url).convert("RGB")
+prompt = "medieval castle by Caspar David Friedrich"
+image = pipeline(prompt, image=image).images[0]
+# Don't forget to save your OpenVINO model so that you can load it without exporting it with `export=True`
+pipeline.save_pretrained("openvino-sd-xl-refiner-1.0")
+```
+
+
+### Refining the image output
+
+The image can be refined by making use of a model like [stabilityai/stable-diffusion-xl-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0). In this case, you only have to output the latents from the base model.
+
+
+```python
+from optimum.intel import OVStableDiffusionXLImg2ImgPipeline
+
+model_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
+refiner = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_id, export=True)
+
+image = base(prompt=prompt, output_type="latent").images[0]
+image = refiner(prompt=prompt, image=image[None, :]).images[0]
+```
+
+
+## Latent Consistency Models
+
+
+| Task | Auto Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `OVLatentConsistencyModelPipeline` |
+
+
+### Text-to-Image
+
+Here is an example of how you can load a Latent Consistency Models (LCMs) from [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) and run inference using OpenVINO :
+
+```python
+from optimum.intel import OVLatentConsistencyModelPipeline
+
+model_id = "SimianLuo/LCM_Dreamshaper_v7"
+pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, export=True)
+prompt = "sailing ship in storm by Leonardo da Vinci"
+images = pipeline(prompt, num_inference_steps=4, guidance_scale=8.0).images
+```
diff --git a/docs/source/openvino/tutorials/notebooks.mdx b/docs/source/openvino/tutorials/notebooks.mdx
new file mode 100644
index 0000000000..7054593ddc
--- /dev/null
+++ b/docs/source/openvino/tutorials/notebooks.mdx
@@ -0,0 +1,26 @@
+
+
+# Notebooks
+
+## Inference
+
+| Notebook | Description | Studio Lab | |
+|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|------:|
+| [How to run inference with the OpenVINO](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) | Explains how to export your model to OpenVINO and to run inference with OpenVINO Runtime on various tasks | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) |
+
+## Quantization
+
+| Notebook | Description | Studio Lab | |
+|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|------:|
+| [How to quantize a question answering model with OpenVINO NNCF](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) | Show how to apply post-training quantization on a question answering model using [NNCF](https://github.com/openvinotoolkit/nncf) and to accelerate inference with OpenVINO | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) |
+| [How to quantize Stable Diffusion model with OpenVINO NNCF](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb) | Show how to apply post-training hybrid quantization on a Stable Diffusion model using [NNCF](https://github.com/openvinotoolkit/nncf) and to accelerate inference with OpenVINO | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb)|
+| [Compare outputs of a quantized Stable Diffusion model with its full-precision counterpart](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) | Show how to load and compare outputs from two Stable Diffusion models with different precision | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) |
+
+