diff --git a/optimum/exporters/openvino/__main__.py b/optimum/exporters/openvino/__main__.py index 54fe1193e5..3c594679dd 100644 --- a/optimum/exporters/openvino/__main__.py +++ b/optimum/exporters/openvino/__main__.py @@ -19,6 +19,7 @@ from requests.exceptions import ConnectionError as RequestsConnectionError from transformers import AutoConfig, AutoTokenizer +from openvino import save_model from optimum.exporters import TasksManager from optimum.exporters.onnx import __main__ as optimum_main @@ -46,6 +47,24 @@ logger = logging.getLogger(__name__) +def tokenizer_export( + tokenizer, + output: Union[str, Path], + suffix: Optional[str] = "" +): + try: + from openvino_tokenizers import convert_tokenizer + ov_tokenizer, ov_detokenizer = convert_tokenizer(tokenizer, with_detokenizer=True) + if isinstance(output, str): + output = Path(output) + tokenizer_path = output.joinpath("openvino_tokenizer" + suffix + ".xml") + detokenizer_path = output.joinpath("openvino_detokenizer" + suffix + ".xml") + save_model(ov_tokenizer, tokenizer_path) + save_model(ov_detokenizer, detokenizer_path) + except Exception as exception: + print("[ WARNING ] OpenVINO tokenizer/detokenizer models couldn't be exported because of exception:", exception) + + def main_export( model_name_or_path: str, output: Union[str, Path], @@ -328,6 +347,12 @@ class StoreAttr(object): if generation_config is not None: generation_config.save_pretrained(output) maybe_save_preprocessors(model_name_or_path, output) + try: + # TODO: Avoid loading the tokenizer again if loaded before + tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) + tokenizer_export(tokenizer, output) + except: + print("[ WARNING ] Could not load tokenizer using specified model ID or path. OpenVINO tokenizer/detokenizer models won't be generated.") if model.config.is_encoder_decoder and task.startswith("text-generation"): raise ValueError( @@ -358,10 +383,12 @@ class StoreAttr(object): tokenizer = getattr(model, "tokenizer", None) if tokenizer is not None: tokenizer.save_pretrained(output.joinpath("tokenizer")) + tokenizer_export(tokenizer, output) tokenizer_2 = getattr(model, "tokenizer_2", None) if tokenizer_2 is not None: tokenizer_2.save_pretrained(output.joinpath("tokenizer_2")) + tokenizer_export(tokenizer, output, "_2") model.save_config(output)