-
Notifications
You must be signed in to change notification settings - Fork 0
/
MyFunctions.py
314 lines (244 loc) · 9.05 KB
/
MyFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import math
import numpy as np
import numpy.ma as ma
import itertools
import warnings
from MyNumpyTools import nan_or_masked
from matplotlib._cntr import Cntr
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
def divisorGenerator(n):
large_divisors = []
for i in range(1, int(math.sqrt(n) + 1)):
if n % i is 0:
yield i
if i is not n / i:
large_divisors.insert(0, n / i)
for divisor in large_divisors:
yield divisor
def divisors(n, type_out=int):
"""Compute all divisors of n"""
# http://stackoverflow.com/questions/171765/
# what-is-the-best-way-to-get-all-the-divisors-of-a-number
div_array = np.array(list(divisorGenerator(n))).astype(type_out)
return div_array
def central_diff_gradient(F, *x):
"""Gradient using central difference
Forward and backward difference at ends
F can be one or two dimensional
If F is two dimensional, x can be one or two dimensional
If no x is specified, it is assumed to be increments of one"""
if not len(x):
x = np.arange(F.shape[0])
# Ensure that inputs are numpy arrays
x, F = np.asanyarray(x), np.asanyarray(F)
x = np.squeeze(x)
# Ensure correct shape
if F.size == x.size and F.ndim > 1:
assert x.shape == F.shape, 'F and x are not the same shape'
# Ensure correct shape
F_needs_transpose = (F.shape[0] != x.shape[0])
if F_needs_transpose:
F = F.T
# Ensure F and x have two dimensions, even if that means second dimension
# have a length of 1
if F.ndim == 1:
F = np.expand_dims(F, 1)
if x.ndim == 1:
x = np.expand_dims(x, 1)
# Account for masked values or NaN values in F (assuming none in x)
# And assumes invalid values only at ends (none in middle of data)
# zero, one, neg_one, neg_two take place of 0, 1, -1, -2 in indexing
# They're respectively the first, second, last, and second to last values
# that are not masked or NaN
zero = np.argmin(nan_or_masked(F), axis=0)
one = zero + 1
two = zero + 2
end = F.shape[0] - np.argmin(np.flipud(nan_or_masked(F)), axis=0)
neg_one = end - 1
neg_two = neg_one - 1
# Preallocate array into which to save the result
F_x = np.zeros(F.shape)
# Forward difference at left end
h = x[one, :] - x[zero, :]
F_x[zero, :] = (F[one, :] - F[zero, :])/h
# Backward difference at right end
h = x[neg_one, :] - x[neg_two, :]
F_x[neg_one, :] = (F[neg_one, :] - F[neg_two, :])/h
# Central Difference in interior
# Step sizes
for col in range(F.shape[1]):
xcol = 0 if x.shape[1] == 1 else col
h_i = np.diff(x[zero[col]:neg_one[col], xcol])
h_ip1 = np.diff(x[one[col]:end[col], xcol])
# Differences
dF_i = F[one[col]:neg_one[col], col] - F[zero[col]:neg_two[col], col]
dF_ip1 = F[two[col]:end[col], col] - F[one[col]:neg_one[col], col]
# Gradient at i using F[i-1], F[i] and F[i+1]. Weighted by how close
# F[i] is to F[i-1] and F[i+1]
F_x[one[col]:neg_one[col], col] = (
(h_ip1/(h_i + h_ip1))*(dF_i/h_i) +
(h_i/(h_i + h_ip1))*(dF_ip1/h_ip1))
# Return output to shape of input
if F_needs_transpose:
F_x = F_x.T
# Remove extra dimension that was added to one-dimensional arrays
F, F_x = map(np.squeeze, [F, F_x])
# Mask result based on input mask
if np.any(nan_or_masked(F)):
F_x = ma.masked_where(nan_or_masked(F), F_x)
return F_x
def cosd(angle):
err_msg = 'Import cosd from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def sind(angle):
err_msg = 'Import sind from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def lat2str(deg):
min = 60 * (deg - np.floor(deg))
deg = np.floor(deg)
if np.allclose(min, 0.0):
min = 0
elif deg < 0:
deg += 1.0
min -= 60.0
return ("%d\N{DEGREE SIGN} %g$\prime$") % (np.abs(deg), np.abs(min))
def lon2strW(deg):
deg = 360 - deg
min = 60 * (deg - np.floor(deg))
deg = np.floor(deg)
if np.allclose(min, 0.0):
min = 0
no_min = True
elif deg < 0:
deg += 1.0
min -= 60.0
no_min = False
if no_min:
return ("%d\N{DEGREE SIGN}") % -np.abs(deg)
else:
return ("%d\N{DEGREE SIGN} %g$\prime$") % (-np.abs(deg), np.abs(min))
def scalar_projection(x0, y0, x1, y1, x, y):
"""Projection of vector (x - x0, y - y0) onto (x1 - x0, y1 - y0)"""
A = (x - x0, y - y0)
B = (x1 - x0, y1 - y0)
return (A[0]*B[0] + A[1]*B[1])/np.hypot(*B)
def angle(x0, y0, x1, y1, x, y, degrees=False):
"""Angle between vectors (x - x0, y - y0) and (x1 - x0, y1 - y0)"""
# Convert the three input points to two vectors x1, y1 and x2, y2
x1, x2, y1, y2 = x1 - x0, x - x0, y1 - y0, y - y0
inner_product = x1*x2 + y1*y2
len1 = np.hypot(x1, y1)
len2 = np.hypot(x2, y2)
angle = np.arccos(inner_product/(len1*len2))
return (np.rad2deg(angle) if degrees else angle)
def flatten2Dlist(list2d):
# http://stackoverflow.com/questions/952914/
# making-a-flat-list-out-of-list-of-lists-in-python
try:
return list(itertools.chain(*list2d))
except TypeError:
# Already flat?
return list2d
def minmax(x, axis=None, astype='float'):
err_msg = 'Import minmax from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def argmin_nd(arr):
err_msg = 'Import argmin_nd from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def argmax_nd(arr):
err_msg = 'Import argmax_nd from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def blockify(x, y):
"""Convert x and y vectors so that they can be used for line plots where
the y values are piecewise constant
x needs to be y.size + 1"""
assert x.size == y.size + 1, "x should be one value longer than y"
x_repeat, y_repeat = ma.zeros(2*y.size), ma.zeros(2*y.size)
x_repeat[::2], x_repeat[1::2] = x[:-1], x[1:]
y_repeat[::2], y_repeat[1::2] = y, y
return x_repeat, y_repeat
def ma_percentile(a, q, axis=None, **kw_args):
err_msg = 'Import ma_percentile from MyNumpyTools instead of MyFunctions'
raise DeprecationWarning(err_msg)
def get_contour(x, y, Z, levels, fill_value=np.nan):
"""Get just the data that would be returned by plt.contour
The output is interpolated onto the original x grid
Inputs
------
x, y : 1D arrays
Arrays that you would input into plt.contour
Z : 2D arrays
Array that you would input into plt.contour
levels : float, array, or list
Value(s) at which contours are calculated
sort_x : float or 'extrapolate'
Value passed to interp1d
Setting to 'extrapolate' may help remove NaNs
Returns
-------
contour_values : 1D or 2D array
Shape depends on number of levels
"""
# Allow Z array to be either way around
try:
X, Y = np.meshgrid(x, y, indexing='ij')
c = Cntr(X, Y, Z)
except ValueError:
X, Y = np.meshgrid(x, y)
c = Cntr(X, Y, Z)
# Ensure levels is iterable
if not hasattr(levels, '__iter__'):
levels = np.r_[levels]
out = np.zeros((len(x), len(levels)))
warnings.filterwarnings('ignore', 'invalid value encountered*')
for i, level in enumerate(levels):
res = c.trace(level)
# result is a list of arrays of vertices and path codes
# (see docs for matplotlib.path.Path)
nseg = len(res) // 2
x_cont = np.vstack(res[:nseg])[:, 0]
z_cont = np.vstack(res[:nseg])[:, 1]
f = interp1d(
x_cont, z_cont, fill_value=fill_value, bounds_error=False)
out[:, i] = f(x)
return out.squeeze()
def fit_gaussian(x, y, init_params, print_result=False):
"""Fit gaussian curve
Inputs
------
x, y: arrays
init_params: initial guess for amplitude, mean and std dev
Output
------
amplitude, mean, standard deviation
"""
def gauss(x, *p):
A, mu, sigma = p
return A*np.exp(-(x-mu)**2/(2.*sigma**2))
fit = curve_fit(gauss, x, y, init_params)[0]
if print_result:
print('Amplitude: ' + str(fit[0]))
print('Mean: ' + str(fit[1]))
print('Std Dev: ' + str(fit[2]))
return fit
def calc_power_law(x, y, plot_results=False):
x, y = np.log10(x), np.log10(y)
p, V = np.polyfit(x, y, 1, cov=True)
slope = p[0]
# https://stackoverflow.com/questions/27634270/
# how-to-find-error-on-slope-and-intercept-using-numpy-polyfit
slope_err = np.sqrt(V[0][0])
print(slope_err)
p_high, p_low = p.copy(), p.copy()
p_high[0] = p[0] + slope_err
p_low[0] = p[0] - slope_err
slope_str = 'Slope = {0:2.2f} ± {1:2.2f}'.format(slope, slope_err)
print(slope_str)
if plot_results:
plt.plot(x, y, 'ko')
plt.plot(x, np.polyval(p, x), 'k')
plt.plot(x, np.polyval(p_high, x), 'k--')
plt.plot(x, np.polyval(p_low, x), 'k--')
plt.title(slope_str)