This page provides basic usage about yolov5-obb. For installation instructions, please see install.md.
1. Prepare custom dataset files
1.1 Make sure the labels format is [poly classname diffcult], e.g., You can set diffcult=0
x1 y1 x2 y2 x3 y3 x4 y4 classname diffcult
1686.0 1517.0 1695.0 1511.0 1711.0 1535.0 1700.0 1541.0 large-vehicle 1
1.2 Split the dataset.
cd yolov5_obb
python DOTA_devkit/ImgSplit_multi_process.py
or Use the orignal dataset.
cd yolov5_obb
1.3 Make sure your dataset structure same as:
parent
├── yolov5
└── datasets
└── DOTAv1.5
├── train_split_rate1.0_subsize1024_gap200
├── val_split_rate1.0_subsize1024_gap200
└── test_split_rate1.0_subsize1024_gap200
├── images
|────1.jpg
|────...
└────10000.jpg
├── labelTxt
|────1.txt
|────...
└────10000.txt
Note:
- DOTA is a high resolution image dataset, so it needs to be splited before training/testing to get better performance.
2. Train
2.1 Train with specified GPUs. (for example with GPU=3)
python train.py --device 3
2.2 Train with multiple(4) GPUs. (DDP Mode)
python -m torch.distributed.launch --nproc_per_node 4 train.py --device 0,1,2,3
2.3 Train the orignal dataset demo.
python train.py \
--weights 'weights/yolov5n_s_m_l_x.pt' \
--data 'data/yolov5obb_demo.yaml' \
--hyp 'data/hyps/obb/hyp.finetune_dota.yaml' \
--epochs 10 \
--batch-size 1 \
--img 1024 \
--device 0
2.4 Train the splited dataset demo.
python train.py \
--weights 'weights/yolov5n_s_m_l_x.pt' \
--data 'data/yolov5obb_demo_split.yaml' \
--hyp 'data/hyps/obb/hyp.finetune_dota.yaml' \
--epochs 10 \
--batch-size 2 \
--img 1024 \
--device 0
This repo provides the validation/testing scripts to evaluate the trained model.
Examples:
Assume that you have already downloaded the checkpoints to runs/train/yolov5m_csl_dotav1.5/weights
.
- Test yolov5-obb with single GPU. Get the HBB metrics.
python val.py \
--data 'data/yolov5obb_demo_split.yaml' \
--weights 'runs/train/yolov5m_csl_dotav1.5/weights/best.pt' \
--batch-size 2 --img 1024 --task 'val' --device 0 --save-json --name 'obb_demo_split'
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 3/3 [00:02<00:00, 1.09it/s]
all 6 68 0.921 0.914 0.966 0.776
plane 6 16 0.946 1 0.995 0.934
small-vehicle 6 35 0.928 0.741 0.916 0.599
large-vehicle 6 17 0.89 1 0.986 0.793
Speed: .................................................... per image at shape (2, 3, 1024, 1024)
...
Evaluating pycocotools mAP... saving runs/val/obb_demo_split/best_obb_predictions.json...
---------------------The hbb and obb results has been saved in json file-----------------------
- Parse the results. Get the poly format results.
python tools/TestJson2VocClassTxt.py --json_path 'runs/val/obb_demo_split/best_obb_predictions.json' --save_path 'runs/val/obb_demo_split/obb_predictions_Txt'
- Merge the results. (If you split your dataset)
python DOTA_devkit/ResultMerge_multi_process.py \
--scrpath 'runs/val/obb_demo_split/obb_predictions_Txt' \
--dstpath 'runs/val/obb_demo_split/obb_predictions_Txt_Merged'
- Get the OBB metrics
python DOTA_devkit/dota_evaluation_task1.py \
--detpath 'runs/val/obb_demo_split/obb_predictions_Txt_Merged/Task1_{:s}.txt' \
--annopath 'dataset/dataset_demo/labelTxt/{:s}.txt' \
--imagesetfile 'dataset/dataset_demo/imgnamefile.txt'
...
map: 0.6666666666666669
classaps: [100. 0. 100.]
We provide the validation/testing scripts to evaluate the trained model.
Examples:
Assume that you have already downloaded the checkpoints to runs/train/yolov5m_csl_dotav1.5/weights
.
- Test yolov5-obb with single GPU. Get the HBB metrics.
python val.py \
--data 'data/yolov5obb_demo.yaml' \
--weights 'runs/train/yolov5m_csl_dotav1.5/weights/best.pt' \
--batch-size 1 --img 2048 --task 'val' --device 0 --save-json --name 'obb_demo'
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 1/1 [00:00<00:00, 1.98it/s]
all 1 56 0.97 0.85 0.953 0.752
plane 1 11 1 1 0.995 0.944
small-vehicle 1 34 1 0.641 0.889 0.535
large-vehicle 1 11 0.91 0.909 0.976 0.777
Speed: .................................................... per image at shape (1, 3, 2048, 2048)
...
Evaluating pycocotools mAP... saving runs/val/obb_demo/best_obb_predictions.json...
---------------------The hbb and obb results has been saved in json file-----------------------
- Parse the results. Get the poly format results.
python tools/TestJson2VocClassTxt.py --json_path 'runs/val/obb_demo/best_obb_predictions.json' --save_path 'runs/val/obb_demo/obb_predictions_Txt'
- Get the OBB metrics
python DOTA_devkit/dota_evaluation_task1.py \
--detpath 'runs/val/obb_demo/obb_predictions_Txt/Task1_{:s}.txt' \
--annopath 'dataset/dataset_demo/labelTxt/{:s}.txt' \
--imagesetfile 'dataset/dataset_demo/imgnamefile.txt'
...
map: 0.6666666666666669
classaps: [100. 0. 100.]
- image demo
python detect.py --weights 'runs/train/yolov5m_csl_dotav1.5/weights/best.pt' \
--source 'dataset/dataset_demo/images/' \
--img 2048 --device 0 --conf-thres 0.25 --iou-thres 0.2 --hide-labels --hide-conf
*If you want to evaluate the result on DOTA test-dev, please zip the poly format results files and submit it to the evaluation server.