-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSeminar 1-Preference and Marshallian demand function.tex
1106 lines (814 loc) · 35.5 KB
/
Seminar 1-Preference and Marshallian demand function.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\setlength{\parindent}{0pt}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan}
\usepackage{graphicx}
\graphicspath{ {./pic/} }
\usepackage{tablefootnote}
\usepackage{fourier,amssymb,microtype,amsmath,gensymb}
\newcommand{\R}{\mathbb{R}}
\usepackage{mdframed,caption,xcolor}
\usepackage{tikz,tkz-euclide}
\title{Seminar 1 - Preference and Marshallian demand function}
\author{Xiaoguang Ling \\ \href{xiaoguang.ling@econ.uio.no}{xiaoguang.ling@econ.uio.no}}
\date{\today}
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Before we start}
\begin{itemize}
\item The course/seminar is difficult and time-consuming $\rightarrow$ help each other
\item More details on assumptions (that we have "recklessly" applied in previous economic classes), more complex and interesting questions, more mathematics
\item Use your textbook wisely: Hints, Mathematical Appendices, Index
\item Open-book exam, can also be difficult. Previous exam: \href{https://www.uio.no/studier/emner/sv/oekonomi/ECON4220/previous-exams/}{Econ 4220/3220}, \href{https://www.uio.no/studier/emner/sv/oekonomi/ECON3200/previous-exams/index.html}{Econ 4200/3200}
\item Zoom seminars, solution sketch will be available before every weekend in Canvas.
\item Your feedback is important (too fast, unclear, mistakes etc.). Contact me (\href{xiaoguang.ling@econ.uio.no}{xiaoguang.ling@econ.uio.no}) in time!
\end{itemize}
\newpage
\section*{One more thing about online teaching}
Your in-time feedback (questions,suggestions,criticism, etc.) really matters, especially at these times.
Here are several ways for online Q \& A
\begin{itemize}
\item \href{https://www.dropbox.com/referrals/AACx30a_-sudYoShl6zfNAQGKT2agvs-2wY?src=global9}{Dropbox} folder sharing. I'll show you how to ask questions on it.
\begin{itemize}
\item Free, no downloading needed, visible to everyone : \href{https://www.dropbox.com/sh/a7igfgfgwwsx1w5/AABlcL6h_JBGl-AZDJCHyP6ga?dl=0}{Link}
\item You can comment on my slides directly, and point out in which line/graph/fuction the problem is.
\item Email address needed(to permit you editing my folder), sign your Email address here if you want: \href{https://docs.google.com/spreadsheets/d/1pNukxmwu8BX5blj0uOcLB7XxZX7gxgjpQsle1yO1vZI/edit?usp=sharing}{GoogleSheet}
\end{itemize}
\item Zoom meeting. Maybe we can arrange online office hours.
\item Email. Do contact us before it's too late, don't hesitate
\end{itemize}
\bigskip
As you may know, your questions can contain many graphs and mathematical symbols, here are ways to make them online:
\begin{itemize}
\item Photo of your handwrittings.
\item Record your questions and send it to me
\item Write it in \LaTeX{} format and send me your text (I will appreciate it :) )
\end{itemize}
\bigskip
We will create a new document called "Q\&A.pdf" in our shared folder. It will contain all the questions we collected from you and our answers.
\begin{itemize}
\item Questions will be anonymous without special requirement.
\end{itemize}
\newpage
\section*{A Road map for this semester}
\bigskip
\bigskip
\usetikzlibrary{arrows,shapes,positioning,shadows,trees}
\tikzset{
basic/.style = {draw, text width=2cm, drop shadow, font=\sffamily, rectangle},
root/.style = {basic, rounded corners=2pt, thin, align=center,
fill=green!30},
level 2/.style = {basic, rounded corners=6pt, thin,align=center, fill=green!60,
text width=8em},
level 3/.style = {basic, thin, align=left, fill=pink!60, text width=6.5em}
}
\begin{tikzpicture}[
level 1/.style={sibling distance=40mm},
edge from parent/.style={->,draw},
>=latex]
\node[root] {Econ 3220/4220}
child {node[level 2] (c1) {Economic Agents}}
child {node[level 2] (c2) {Equilibrium}}
child {node[level 2] (c3) {Game Theory}}
child {node[level 2] (c4) {More about Information}};
\begin{scope}[every node/.style={level 3}]
\node [below of = c1, xshift=15pt] (c11) {Consumer};
\node [below of = c11] (c12) {Firm};
\node [below of = c3, xshift=15pt] (c31) {Static};
\node [below of = c31] (c32) {Dynamic};
\node [below of = c32] (c33) {Complete information};
\node [below of = c33] (c34) {Incomplete information};
\node [below of = c4, xshift=15pt] (c41) {Moral Hazard};
\node [below of = c41] (c42) {Adverse Selection};
\node [below of = c42] (c43) {Bidding in Auctions};
\end{scope}
\foreach \value in {1,2}
\draw[->] (c1.195) |- (c1\value.west);
\foreach \value in {1,2,3,4}
\draw[->] (c3.195) |- (c3\value.west);
\foreach \value in {1,2,3}
\draw[->] (c4.195) |- (c4\value.west);
\end{tikzpicture}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 1.8. Axioms of consumer choice}
Sketch a map of indifference sets that are all \textbf{parallel}, \textbf{negatively sloped
straight lines}, with \textbf{preference increasing north-easterly}.We know that preferences
such as these satisfy Axioms 1, 2, 3, and 4.
\begin{itemize}
\item Prove that they also satisfy Axiom 5'.
\item Prove that they do not satisfy Axiom 5.
\end{itemize}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\textbf{Review: 5 Axioms of consumer choice (JR pp. 5-12)}
\vspace{2mm}
The preference (indifference curve) shown in Figure \ref{fig:familiar} is classical in all
economics classes. Why does it look like this way?
\vspace{2mm}
{\centering
\begin{tikzpicture}[scale=1.2]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (5.5,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,5.5) node [left] {$x_2$};
\draw (0.3,5) to [out=280,in=175] (5.5,0.5);
\draw (1,5) to [out=280,in=175] (5.5,1.2);
\draw (1.6,5) to [out=280,in=175] (5.5,1.8);
\end{tikzpicture}
\captionof{figure}{An indifference map}
\label{fig:familiar}}
\vspace{2mm}
The most basic assumptions about our preference are Axiom 1. and Axiom 2.
\begin{itemize}
\item Axiom 1. Completeness (We can always choose)
$\forall \ x^1, x^2$ in $X$, we have: $x^1 \succsim x^2$ or $x^2 \succsim x^1$ or both
\item Axiom 2. Transitivity
$\forall \ x^1, x^2$, and $x^3$ in $X$, if $x^1 \succsim x^2$ and $x^2 \succsim x^3$, then $x^1 \succsim x^3$
\end{itemize}
With Axiom 1. and Axiom 2. , the preference set can be:
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.open}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1 and 2.}
\label{open}}
\vspace{2mm}
What happens around the "boundary"?
\begin{itemize}
\item Axiom 3. Continuity (define boundary)
$\succsim (x)$ and $\precsim (x)$ sets are closed in $\R^n_+$ for $x \in \R^n_+ $.
\end{itemize}
Once the boundary is properly defined, there is no sudden preference reversal any more.
Now the preference set looks like Figure \ref{fig:ball}
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.ball}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1, 2, and 3.}
\label{fig:ball}}
\vspace{2mm}
Further more, we assume "unlimited wants" can be represented by our preference.
For example, we can try Axiom 4'.
\begin{itemize}
\item Axiom 4'. Local non-satiation (always something better around)
$\forall \ x^0 \in \R^n_+ \ $ and $ \ \forall \ \epsilon > 0$, $\exists x
\in B_{\epsilon}(x^0) \cap \R^n_+ \ $ s.t. $\ x \succ x^0$
\end{itemize}
Axiom 4' rulled out the "indifference zone" in Figure \ref{fig:ball} and our preference set
is deduced into Figure \ref{fig:line}.
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.line}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1, 2, 3 and 4'}
\label{fig:line}}
\vspace{2mm}
However, Axiom 4' doesn't mean "the more, the better (at least not worse)" shown in Figure \ref{fig:mono}.
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.mono}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1, 2, 3 and 4' again}
\label{fig:mono}}
\vspace{2mm}
To depict this, we assume Axiom 4 instead.
\begin{itemize}
\item Axiom 4. Strict monotonicity (the more, the better)
$\forall \ x^0, x^1 \in \R^n_+ \ $, if $x^0 \ge x^1, \ $ then $\ x^0 \succsim x^1 \ $, while if
$x^0 \gg x^1, \ $ then $\ x^0 \succ x^1$.
\end{itemize}
A set of preferences satisfying Axioms 1, 2, 3, and 4 is given in Figure \ref{fig:closest}
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.closest}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1, 2, 3 and 4}
\label{fig:closest}}
\vspace{2mm}
In addition, we assume people prefer "balanced" than "extreme" bundles in consumption.
Either Axiom 5' or Axiom 5 can guarantee this, but Axiom 5 will make our analysis easier in the future.
\begin{itemize}
\item Axiom 5'. Convexity
If $\ x^1 \succsim x^0 \ $, then $\ tx^1 + (1-t)x^0 \succsim x^0 \ $ for all $\ t \in [0,1]$
\item Axiom 5. Strict convexity
If $\ x^1 \ne x^0 \ $ and $\ x^1 \succsim x^0 \ $, then $\ tx^1 + (1-t)x^0 \succ x^0 \ $ for all $\ t \in (0,1)$
\end{itemize}
Both Axiom 5' and Axiom 5 can rule out the concave-to-the-origin segments in Figure \ref{fig:closest}.
Finally, we our indifference curve looks the same as in Figure \ref{fig:familiar} and Figure \ref{fig:final}
\vspace{2mm}
{\centering
\includegraphics[width=0.8\textwidth]{1.final}
\captionof{figure}{Hypothetical preferences satisfying Axioms 1, 2, 3, 4 and 5'/5}
\label{fig:final}}
\end{mdframed}
As required by question 1.8, a map of the indifference sets is showed in Figure \ref{fig:1_8}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (1,1.5) -- (3,0.5);
\draw [thick] (1,2.5) -- (5,0.5);
\draw [thick] (1,3.5) -- (7,0.5);
\draw [thick] (1,5.5) -- (8,2);
\end{tikzpicture}
\captionof{figure}{A map of the indifference sets for Q.1.8}
\label{fig:1_8}}
%***************************************************
\subsection{Prove that they also satisfy Axiom 5'}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Read JR. pp. 501 for the definition Convex combination.
\end{mdframed}
For any given bundle $x^0$ in Figure \ref{fig:1_8_a5'}, we can always
find another bundle $x^1$ either on the same indifference curve with $x^0$ lying on
or to the northeast of $x^0$ s.t. $x^1 \succsim x^0$.
No matter which case, the convex combination of $x^0$ and $x^1$ is always at least
as good as $x^0$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (1,1.5) -- (3,0.5);
\draw [thick] (1,2.5) -- (5,0.5);
\draw [thick] (1,3.5) -- (7,0.5);
\draw [thick] (1,5.5) -- (8,2);
\node[above] at (2,3) {$x^0$};
\draw[fill] (2,3) circle [radius =0.04];
\node[left] at (4,1.9) {$x^1$};
\draw[fill] (4,2) circle [radius =0.04];
\node[right] at (4,3) {${x^1}'$};
\draw[fill] (4,3) circle [radius =0.04];
\draw[dashed](2,3)--(4,2);
\draw[dashed](2,3)--(4,3);
\node[below] at (2.9,2.5) {$x^t$};
\draw[fill] (3,2.5) circle [radius =0.04];
\node[above] at (3,3.1) {${x^t}'$};
\draw[fill] (3,3) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Axiom 5' Convexity}
\label{fig:1_8_a5'}}
%***************************************************
\subsection{Prove that they do not satisfy Axiom 5}
To prove the preferences do not satisfy Axiom 5, we only need to
give one example of the violation.
In Figure \ref{fig:1_8_a5}, $x^1 \ne x^0$ and $x^1 \succsim x^0$, but
$x^t=tx^1+(1-t)x^0 \nsucc x^0$ for any $t \in (0,1)$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (1,1.5) -- (3,0.5);
\draw [thick] (1,2.5) -- (5,0.5);
\draw [thick] (1,3.5) -- (7,0.5);
\draw [thick] (1,5.5) -- (8,2);
\node[above] at (2,3) {$x^0$};
\draw[fill] (2,3) circle [radius =0.04];
\node[left] at (4,1.9) {$x^1$};
\draw[fill] (4,2) circle [radius =0.04];
\node[below] at (2.9,2.5) {$x^t$};
\draw[fill] (3,2.5) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Violation of Axiom 5 Strict Convexity}
\label{fig:1_8_a5}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Jehle \& Reny 1.9 - Leontief preferences}
Sketch a map of indifference sets that are \textbf{all parallel right angles that ‘kink’ on the line $x_1 = x_2$}. If
\textbf{preference increases north-easterly}, these preferences will satisfy Axioms 1, 2, 3, and 4'.
\begin{itemize}
\item Prove that they also satisfy Axiom 5'.
\item Do they satisfy Axiom 4?
\item Do they satisfy Axiom 5?
\end{itemize}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (1,6) -- (1,1);
\draw [thick] (1,1) -- (8,1);
\draw [thick] (2,6) -- (2,2);
\draw [thick] (2,2) -- (8,2);
\draw [thick] (4,6) -- (4,4);
\draw [thick] (4,4) -- (8,4);
\draw[dashed](0,0)--(5,5);
\node[right] at (5,5) {$x_1=x_2$};
\end{tikzpicture}
\captionof{figure}{A map of the indifference sets for Q.1.9}
\label{fig:1_9}}
%***************************************************
\subsection{Prove that they also satisfy Axiom 5'}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (1,6) -- (1,1);
\draw [thick] (1,1) -- (8,1);
\draw [thick] (2,6) -- (2,2);
\draw [thick] (2,2) -- (8,2);
\draw [thick] (4,6) -- (4,4);
\draw [thick] (4,4) -- (8,4);
\node[right] at (2,5) {$x^0$};
\draw[fill] (2,5) circle [radius =0.04];
\node[right] at (2,3) {$x^1$};
\draw[fill] (2,3) circle [radius =0.04];
\node[right] at (3.5,3) {${x^1}'$};
\draw[fill] (3.5,3) circle [radius =0.04];
\draw[dashed](2,5)--(2,3);
\draw[dashed](2,5)--(3.5,3);
\node[left] at (2,4) {$x^t$};
\draw[fill] (2,4) circle [radius =0.04];
\node[right] at (3,3.7) {${x^t}'$};
\draw[fill] (3,3.67) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Axiom 5' Convexity }
\label{fig:1_9_a5'}}
%***************************************************
\subsection{Do they satisfy Axiom 4?}
Yes. Any bundle ${x^0}'$ that contains at least as much of every good as $x^1$ does
(i.e. ${x^0}' \ge x^1$ )can only lies in the shaded area including the border.
Obviously, ${x^0}' \succsim x^1$.
In addition, for any ${x^0}$ contains strictly more of every good than $x^1$
does (i.e. ${x^0} \gg x^1$ ), we have ${x^0} \succ x^1$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (2,6) -- (2,2);
\draw [thick] (2,2) -- (8,2);
\draw [thick] (2,3) -- (5,3);
\draw [dashed] (1,3) -- (2,3);
\fill [gray!20] (2.01,3) rectangle (5,6);
\node[below] at (1.8,3) {$x^1$};
\draw[fill] (2,3) circle [radius =0.04];
\node[right] at (4,4) {$x^0$};
\draw[fill] (4,4) circle [radius =0.04];
\node[below] at (3,3) {${x^0}'$};
\draw[fill] (3,3) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Axiom 4 Strict Monotonicity}
\label{fig:1_9_a4}}
%***************************************************
\subsection{Do they satisfy Axiom 5?}
No. In Figure \ref{fig:1_9_a5}, $x^1 \ne x^0$ and $x^1 \succsim x^0$, but
$x^t=tx^1+(1-t)x^0 \nsucc x^0$ for any $t \in (0,1)$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (2,5.6) -- (2,2);
\draw [thick] (2,2) -- (8,2);
\node[left] at (1.8,3) {$x^1$};
\draw[fill] (2,3) circle [radius =0.04];
\node[left] at (2,5) {$x^0$};
\draw[fill] (2,5) circle [radius =0.04];
\node[right] at (2,4) {${x^t}$};
\draw[fill] (2,4) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Axiom 5 Strict Convexity}
\label{fig:1_9_a5}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 1.13 - Lexicographic preferences}
A consumer has lexicographic preferences over $\R^2_+$ if the relation satisfies $x_1, x_2$ whenever
$x_1^1 > x_1^2$, or $x_1^1 = x_1^2$ and $x_2^1 \ge x_2^2$.
\begin{itemize}
\item Sketch an indifference map for these preferences.
\item Can these preferences be represented by a continuous utility function? Why or why not?
\end{itemize}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
$\forall x^1,x^2 \in \R^2_+$, Lexicographic preferences can be defined as:
\begin{equation}
x^1 \succsim x^2 \Leftrightarrow
\begin{cases}
\text{$x^1_1 > x^2_1$}\\
\text{or}\\
\text{$x^1_1 = x^2_1 \ and \ x^1_2 \ge x^2_2$}\\
\end{cases}
\label{eq:laxi}
\end{equation}
\begin{itemize}
\item $x_1$ is critical
\item like a dictionary
\end{itemize}
\end{mdframed}
%***************************************************
\subsection{Sketch an indifference map for these preferences.}
There is no indifference map for Lexicographic preferences. To draw the indifference map,
we must have different bundles lying on indifference curves.
Assume there are two different budles $x^1, x^2$ s.t. $x^1 \sim x^2$, i.e. $x^1 \succsim x^2$
and $x^2 \succsim x^1$. According to the definition in formula \ref{eq:laxi}, this requires
\begin{equation}
Both \
\begin{cases}
\text{$x^1_1 > x^2_1$}\\
\text{or}\\
\text{$x^1_1 = x^2_1 \ and \ x^1_2 \ge x^2_2$}\\
\end{cases}
and \
\begin{cases}
\text{$x^2_1 > x^1_1$}\\
\text{or}\\
\text{$x^2_1 = x^1_1 \ and \ x^2_2 \ge x^1_2$}\\
\end{cases}
\label{eq:nomap}
\end{equation}
Obviously, the only possible condition is $x^1_1 = x^2_1 \ and \ x^1_2 = x^2_2$, which contradicts
with our assertion $x^1, x^2$ are different.
%***************************************************
\subsection{Can these preferences be represented by a continuous utility function? Why or why not?}
No. Because Lexicographic preferences are not continuous.
According to our Axiom 3, continuity means $\succsim$ and $\precsim$ sets are closed.
In Figure \ref{fig:1_13_pre}, we can see the $\succsim$ set for any bundle $x^0$ is not closed.
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (9,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,6) node [left] {$x_2$};
\draw [thick] (2,3) -- (2,6);
\draw [dashed] (2,3) -- (2,0);
\fill [gray!20] (2.01,0.01) rectangle (6,6);
\node[below] at (1.8,3) {$x^0$};
\draw (2,3) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{${\succsim x^0}$ set for Lexicographic preferences}
\label{fig:1_13_pre}}
\vspace{2mm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 1.15 - compact and convex}
Prove that the budget set, $B$, is a \textbf{compact, convex set whenever $p \gg 0$}.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
\begin{itemize}
\item A budget set $B$ can be difined as $B \equiv \{x \in \R^n_+ | p_1x_1 + p_2x_2 + \ldots + p_nx_n \le y \}$
\item \begin{equation}
S \ \ is \ \ Compact \ (JR. \ pp. 514):
\begin{cases}
\text{Closed: not open}\\
\text{Bounded: $\exists \epsilon > 0 \ $ s.t. $\ S \subset B_{\epsilon}(x)$}\\
\end{cases}
\end{equation}
\item Open: $S$ is open if $\forall x \in S, \exists \epsilon > 0 \ $ s.t. $\ B_{\epsilon}(x) \subset S$ \\
\item Convex: $S$ is convex if for any $x^1, x^2 \in S,\ $ we have $tx^1 + (1-t)x^2 \in S, \forall t \in [0,1]$
\end{itemize}
\end{mdframed}
%***************************************************
\subsection{Budget set $B$ is compact when $p \gg 0$}
\textbf{(1) $B$ is closed(not open).}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (3,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,5) node [left] {$x_2$};
\draw [thick] (0,4) -- (2,0);
\draw (1,2) circle [radius =0.2];
\draw [fill] (1,2) circle [radius =0.03];
\node[right] at (1,2.3) {$B_{\epsilon}(x^0)$};
\node[below] at (0.9,2) {$x^0$};
\node[below] at (2,0) {$\frac{y}{p_1}$};
\node[left] at (0,4) {$\frac{y}{p_2}$};
\end{tikzpicture}
\captionof{figure}{An example of closed budget set with 2 dimentions}
\label{fig:1_15_close}}
\vspace{2mm}
We can find some $x^0$, s.t. $p'x^0 = p_1x^0_1 + p_2x^0_2 + \ldots + p_nx^0_n = y$.
Where $p' = (p_1, p_2, \ldots, p_n)$ and ${x^0}' = (x^0_1, x^0_2, \ldots, x^0_n)$
Obviously, $x^0 \in S$ (actually it's on the boundary).
\medskip
Define $B_{\epsilon}(x^0)$ as the ball with $x^0$ as center and $\epsilon > 0$ as radius.
For any $\epsilon > 0 \ $, we can always find some $ \ e \in (0, \epsilon) \ $ s.t. bundle
$\ x^1 = (x^0_1 + e, x^0_2, \ldots, x^0_n)$ lies in ball $B_{\epsilon}(x^0)$, while since $\ p'x^1 > y$,
$x^1$ is out of the budget set $B$.
\medskip
In conclusion: we can never find an $\epsilon > 0 \ $ s.t. $\ B_{\epsilon}(x^0) \subset B$. Therefore
$B$ is closed.
\bigskip
\textbf{(2) $B$ is bounded}
Define $N \equiv max\{\frac{y}{p_1},\frac{y}{p_2},\ldots, \frac{y}{p_n}\} > 0$.
$\forall x \in B$, we have $C = (N,N, \ldots, N) > x$. We can thus argue that $B$
can be contained by some ball $B_{(\epsilon)}(x^0)$, i.e. bounded.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
For example:
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (3.4,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,3.4) node [left] {$x_2$};
\draw [thick] (0,2) -- (1,0);
\draw [dashed] (2,2) -- (2,0);
\draw [dashed] (0,2) -- (2,2);
\draw [dashed] (0,0) -- (2,2);
\node[below] at (1,0) {$\frac{y}{p_1}$};
\node[left] at (0,2) {$\frac{y}{p_2}$};
\draw (0,0) circle [radius =2.83];
\end{tikzpicture}
\captionof{figure}{An example of closed budget set with 2 dimentions}
\label{fig:1_15_bounded}}
\vspace{2mm}
$B \subset C \subset B_{(\sqrt{n}N)}(origin)$.
\end{mdframed}
%***************************************************
\subsection{Budget set $B$ is convex when $p \gg 0$}
Again, define price vector $p' = (p_1, p_2, \ldots, p_n)$ and bundle ${x}' = (x_1, x_2, \ldots, x_n)$
For any $x^1, x^2 \in B$, we have
\begin{align*}
p'x^1 \le y \\
p'x^2 \le y \\
\end{align*}
Define $x^t = tx^1 + (1-t)x^2, t \in [0,1]$
We have
\begin{align*}
p'x^t &= p'tx^1 + p'(1-t)x^2 \\
&= tp'x^1 + (1-t)p'x^2 \\
&\le ty + (1-t)y \\
\end{align*}
$p'x^t \le y \Rightarrow x^t \in B$. Therefore $B$ is convex.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 1.26 - Marshallian demand function}
A consumer of \textbf{two goods} faces \textbf{positive prices} and has a \textbf{positive income}.
His utility function is $$u(x_1, x_2) = x_1$$
\begin{itemize}
\item Derive the Marshallian demand functions.
\end{itemize}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Marshallian demand functions $x^* = x(p, y)$ is the solutions
to the utility maximization problem (JR. pp.21).
\end{mdframed}
Here we have a 2-commodity consumption problem:
\begin{equation}
\begin{cases}
Commodities: x_1, x_2 \ge 0 \\
Price: p_1, p_2 > 0 \\
Income: y > 0 \\
Utility: u(x_1,x_2) = x_1 \\
\end{cases}
\end{equation}
A consumer wants to
$$\max_{x_1,x_2} \ u(x_1,x_2) = x_1 \ \ s.t. \ p_1x_1 + p_2x_2 \le y,
\ \ and \ x_1, x_2 \ge 0 $$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (7,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,5) node [left] {$x_2$};
\draw [fill=gray!20] (0,2) -- (0,0) -- (6,0);
\draw [thick] (0,2) -- (6,0);
\draw [thick] (1,3) -- (1,0);
\draw [thick] (3,3) -- (3,0);
\draw [thick] (6,3) -- (6,0);
\node[above] at (1,3) {$u^1$};
\node[above] at (3,3) {$u^2$};
\node[above] at (6,3) {$u^*$};
\node[below] at (6,0) {$x^* =\frac{y}{p_1}$};
\node[left] at (0,2) {$\frac{y}{p_2}$};
\draw [fill] (6,0) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Corner solution}
\label{fig:1_15_corner}}
\vspace{2mm}
$x_1^*(p_1,y)=\frac{y}{p_1}, x_2^*=0$, note it's a corner solution.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
If you want to use Lagrangian method \footnote{You may wonder how Lagrangian method works for maximizing. Here is a very clear explanation:\href{https://medium.com/@andrew.chamberlain/a-simple-explanation-of-why-lagrange-multipliers-works-253e2cdcbf74\#:~:text=That\%20means\%20they're\%20parallel\%20and\%20point\%20in\%20the\%20same\%20direction.\&text=So\%20the\%20bottom\%20line\%20is,while\%20also\%20satisfying\%20those\%20constraints}{A Simple Explanation of Why Lagrange Multipliers Works}. Note that the in the case of 2-commodity problem, the utility is the third dimension.}, be sure don't forget $x_1, x_2 \ge 0$.
This is important for corner solutions.
More general, we can use \href{https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/ktc/t}{Kuhn-Tucker conditions} to solve the problem.
For question: $\max_{x_1,x_2} \ u(x_1,x_2) = \ \ s.t. \ p_1x_1 + p_2x_2 \le y,
\ \ and \ x_1, x_2 \ge 0 $ , the Lagrangian function is:
$$L = x_1 + \lambda_1(y - p_1x_1 - p_2x_2) + \lambda_2(x_1-0)+ \lambda_3(x_2-0)$$
The Kuhn-Tucker conditions are:
\begin{equation}
\begin{cases}
\frac{\partial L}{\partial x_1} = 1-p_1\lambda_1 + \lambda_2 =0 \\
\frac{\partial L}{\partial x_2} = -p_2\lambda_1 + \lambda_3 =0 \\
\end{cases}
\label{eq:L1}
\end{equation}
\begin{equation}
\begin{cases}
p_1x_1 + p_2x_2 \le y \\
\lambda_1 \ge 0 \\
\lambda_1(y - p_1x_1 - p_2x_2) =0 \\
\end{cases}
\label{eq:L2}
\end{equation}
\begin{equation}
\begin{cases}
x_1 \ge 0 \\
\lambda_2 \ge 0 \\
\lambda_2 x_1 =0 \\
\end{cases}
\label{eq:L3}
\end{equation}
\begin{equation}
\begin{cases}
x_2 \ge 0 \\
\lambda_3 \ge 0 \\
\lambda_3 x_2 =0 \\
\end{cases}
\label{eq:L4}
\end{equation}
\begin{itemize}
\item If $x_1,x_2>0$, by condition \ref{eq:L3} and \ref{eq:L4}, $\lambda_2 = \lambda_3 =0$.
Contradicts with condition \ref{eq:L1}
\item If $x_1=0,x_2>0$, by condition \ref{eq:L4}, $\lambda_3 =0$.
With condition \ref{eq:L1}, we have $\lambda_1 =0, \lambda_2 = -1$, condition \ref{eq:L3} violated.
\item If $x_1>0,x_2=0$, by condition \ref{eq:L3}, $\lambda_2 =0$.
With condition \ref{eq:L1}, we have $\lambda_1 =\frac{1}{p_1}, \lambda_3 = \frac{p_2}{p_1}$.
With condition \ref{eq:L2}, $x_1^* = \frac{y}{p_1}$
\end{itemize}
\end{mdframed}
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
Tips for exam:
\begin{itemize}
\item Drawing a sketch of the budget set and the indifference curves can be very helpful when the utility
function is "bizarre". See also the next question.
\end{itemize}
\end{mdframed}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Jehle \& Reny 1.27 - Marshallian demand function}
A consumer of \textbf{two goods} faces \textbf{positive} prices and has a \textbf{positive income}.
His utility function is $$u(x_1, x_2) = max[ax_1, ax_2] + min[x_1, x_2], \ \ where \ \ 0 < a < 1.$$
\begin{itemize}
\item Derive the Marshallian demand functions.
\end{itemize}
The utility $u(x_1, x_2) = max[ax_1, ax_2] + min[x_1, x_2]$ depends on the relation between $ax_1, ax_2$ and $x_1, x_2$
Since $0 < a < 1$, we know $ax_1 \ge ax_2 \iff x_1 \ge x_2$. Thus:
\begin{equation}
\begin{cases}
If \ \ x_2 \ge x_1 ,\ \ u(x_1, x_2) = ax_2 + x_1 \\
If \ \ x_1 \ge x_2 ,\ \ u(x_1, x_2) = ax_1 + x_2
\end{cases}
\label{eq:mm}
\end{equation}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Any indifference curve in a rectangular coordinate system below is actually the graph of
a function $x_2 = f_(x_1)$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (2,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,2) node [left] {$x_2$};
\end{tikzpicture}
\captionof{figure}{A rectangular coordinate system}
\label{fig:1_27_coor}}
More specifically, since bundles on the same indifference curve can provide the same level of utility,
an indifference curve is the graph of a function $x_2 = f_(x_1)$ given some utility $\bar{u}$
Given $u = \bar{u}$, We can rewrite equation \ref{eq:mm} as:
\begin{equation}
\begin{cases}
If \ \ x_2 >= x_1 ,\ \ x_2 = -\frac{1}{a}x_1 + \frac{1}{a}\bar{u} \\
If \ \ x_1 >= x_2 ,\ \ x_2 = -ax_1 + \bar{u} \\
\end{cases}
\end{equation}
Now we can draw the sketch of the indifference curves:
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (7,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,7) node [left] {$x_2$};
\draw [thick] (0,2) -- (0.67,0.67);
\draw [thick] (0.67,0.67) -- (2,0);
\draw [thick] (0,4) -- (1.33,1.33);
\draw [thick] (1.33,1.33) -- (4,0);
\draw [thick] (0,6) -- (2,2);
\draw [thick] (2,2) -- (6,0);
\draw [dashed] (0,0) -- (6,6);
\node[above] at (0.5,1.2) {$\bar{u}_1$};
\node[above] at (0.5,3.5) {$\bar{u}_2$};
\node[above] at (0.5,5.5) {$\bar{u}_3$};
\node[right] at (1,4.4) {$x_2 = -\frac{1}{a}x_1 + \frac{1}{a}\bar{u}$};
\node[right] at (3.8,1.3) {$x_2 = -ax_1 + \bar{u}$};
\node[below] at (6,0) {$\frac{1}{a}\bar{u}_3$};
\node[left] at (0,6) {$\frac{1}{a}\bar{u}_3$};
\draw [fill] (6,0) circle [radius =0.04];
\draw [fill] (0,6) circle [radius =0.04];
\end{tikzpicture}
\captionof{figure}{Indifference curves are seperated by 45 $\degree \ $line}
\label{fig:1_27_indiff}}
\vspace{2mm}
If we have a budget set similar to the one in Figure \ref{fig:1_27_budget}, we can move our
indifference curve until we have a tangent point. The affordable bundle maximazing the utility
is thus found.
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (7,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,7) node [left] {$x_2$};
\draw [thick] (0,6) -- (2,2);
\draw [thick] (2,2) -- (6,0);
\draw [dashed] (0,4.5) -- (1.5,1.5);
\draw [dashed] (1.5,1.5) -- (4.5,0);
\draw [thick,red] (0,3) -- (3,0);
\node[right] at (1,4.4) {$x_2 = -\frac{1}{a}x_1 + \frac{1}{a}\bar{u}$};
\node[right] at (3.8,1.3) {$x_2 = -ax_1 + \bar{u}$};
\node[below] at (6,0) {$\frac{1}{a}\bar{u}$};
\node[left] at (0,6) {$\frac{1}{a}\bar{u}$};
\draw [fill] (6,0) circle [radius =0.04];
\draw [fill] (0,6) circle [radius =0.04];
\node[left,red] at (0,3) {$\frac{y}{p_2}$};
\node[below,red] at (3,0) {$\frac{y}{p_1}$};
\draw [fill,red] (3,0) circle [radius =0.04];
\draw [fill,red] (0,3) circle [radius =0.04];
\draw [fill] (1.5,1.5) circle [radius =0.04];
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(0,3){C}
\tkzMarkAngle[fill=yellow,opacity=0.8](C,B,A)
\tkzLabelAngle[pos= 1.8,red](C,B,A){$\alpha = -\frac{p_1}{p_2}$}
\end{tikzpicture}
\captionof{figure}{A budget set example}
\label{fig:1_27_budget}}
However, there can be other tricky conditions, depending on the shape of the budget set.
For example, in Figure \ref{fig:1_27_budget2}
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (7,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,7) node [left] {$x_2$};
\draw [thick] (0,6) -- (2,2);
\draw [thick] (2,2) -- (6,0);
\draw [dashed] (0,4.5) -- (1.5,1.5);
\draw [dashed] (1.5,1.5) -- (4.5,0);
\node[right] at (1,4.4) {$x_2 = -\frac{1}{a}x_1 + \frac{1}{a}\bar{u}$};
\node[right] at (3.8,1.3) {$x_2 = -ax_1 + \bar{u}$};
\draw [thick,red] (0,4.5) -- (1,0);
\draw [fill] (0,4.5) circle [radius =0.04];
\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){B}
\tkzDefPoint(0,4.5){C}
\tkzMarkAngle[fill=yellow,size = 0.4, opacity=0.8](C,B,A)
\tkzLabelAngle[pos= 1,red](C,B,A){$\alpha = -\frac{p_1}{p_2}$}
\end{tikzpicture}
\captionof{figure}{A budget set example 2}
\label{fig:1_27_budget2}}
\vspace{2mm}
\begin{itemize}
\item The position of the optimal consumption bundle depends on the slope $\alpha = -\frac{p_1}{p_2}$
\item We need to discussion the relation between $\frac{p_1}{p_2} \ $ and the slop of the
indifference curve $[a,\frac{1}{a}]$ , for $a \in (0,1)$
\end{itemize}
\end{mdframed}
%***************************************************
\begin{enumerate}
\item When $0 < \frac{p_1}{p_2} < a$, the budget set is showed in Figure \ref{fig:1_27_la}. The Marshallian
demand is $\{x_1 = \frac{y}{p_1}, x_2 = 0\}$
{\centering
\begin{tikzpicture}[scale=0.85]
\draw [->] (0,0) node [below] {0} -- (0,0) -- (7,0) node [below] {$x_1$};
\draw [->] (0,0) node [below] {0} -- (0,0) -- (0,7) node [left] {$x_2$};
\draw [thick] (0,6) -- (2,2);