Skip to content

Commit 25986ef

Browse files
committed
Update download link
1 parent 4fd9b5d commit 25986ef

File tree

4 files changed

+33
-50
lines changed

4 files changed

+33
-50
lines changed

.ipynb_checkpoints/CIFAR10-checkpoint.ipynb

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -209,15 +209,6 @@
209209
"print(\"Using\", device)"
210210
]
211211
},
212-
{
213-
"cell_type": "code",
214-
"execution_count": null,
215-
"metadata": {},
216-
"outputs": [],
217-
"source": [
218-
"# model = googlenet(pretrained=True)"
219-
]
220-
},
221212
{
222213
"cell_type": "markdown",
223214
"metadata": {},
Lines changed: 19 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -1,28 +1,29 @@
11
# PyTorch models trained on CIFAR-10 dataset
2-
- I modified [TorchVision](https://pytorch.org/docs/stable/torchvision/models.html) official implementaion of popular CNN models, and trained those on CIFAR-10 dataset.
2+
- I modified [TorchVision](https://pytorch.org/docs/stable/torchvision/models.html) official implementation of popular CNN models, and trained those on CIFAR-10 dataset.
33
- I changed *number of class, filter size, stride, and padding* in the the original code so that it works with CIFAR-10.
4-
- I also share the **weights** of these models, so you can just load the weight and use them.
5-
6-
## Accuracy of supported models
7-
| No. | Model | Test Accuracy |
8-
|-----|--------------|---------------|
9-
| 1 | vgg11_bn | 92.61% |
10-
| 2 | vgg13_bn | 94.27% |
11-
| 3 | vgg16_bn | 94.07% |
12-
| 4 | vgg19_bn | 94.25% |
13-
| 5 | resnet18 | 93.48% |
14-
| 6 | resnet34 | 93.82% |
15-
| 7 | resnet50 | 94.38% |
16-
| 8 | mobilenet_v2 | 93.85% |
17-
| 9 | densenet121 | 94.76% |
18-
| 10 | googlenet | 95.08% |
4+
- I also share the **weights** of these models, so you can just load the weights and use them.
5+
6+
## Statistic of supported models
7+
| No. | Model | Test Accuracy | Parameters | State Dict Size |
8+
|-----|--------------|---------------|------------|-----------------|
9+
| 1 | vgg11_bn | 92.61% | 128.813M | 491 MB |
10+
| 2 | vgg13_bn | 94.27% | 128.998M | 492 MB |
11+
| 3 | vgg16_bn | 94.07% | 134.310M | 512 MB |
12+
| 4 | vgg19_bn | 94.25% | 139.622M | 533 MB |
13+
| 5 | resnet18 | 93.48% | 11.174M | 43 MB |
14+
| 6 | resnet34 | 93.82% | 21.282M | 81 MB |
15+
| 7 | resnet50 | 94.38% | 23.521M | 90 MB |
16+
| 8 | mobilenet_v2 | 93.85% | 2.237M | 9 MB |
17+
| 9 | densenet121 | 94.76% | 6.956M | 27 MB |
18+
| 10 | googlenet | 95.08% | 5.491M | 21 MB |
1919

2020
I will add more models...
2121

2222
## How To Use
2323

2424
**Download the weights**
25-
[Google Drive Link (2GB)](https://drive.google.com/file/d/1JNURU6GRDhvMUMqIbxj27gTJ6P9XuAN6/view?usp=sharing) unzip and put the *state_dicts* folder in *models* folders.
25+
26+
Download weights from [Google Drive Link](https://drive.google.com/drive/folders/15jBlLkOFg0eK-pwsmXoSesNDyDb_HOeV?usp=sharing), and put the weights in **models/state_dicts/** folder.
2627

2728
```python
2829
from models import *
@@ -43,6 +44,6 @@ transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]
4344
## Training Hyper-paramters
4445
- Batch size: 256
4546
- Number of epochs: 600
46-
- Learning rate: 0.05, reduce by factor 0.1 every 200 epochs
47+
- Learning rate: 0.05, multiply by factor 0.1 every 200 epochs
4748
- Weight decay: 0.001
4849
- Nesterov SGD optimizer with momentum = 0.9

CIFAR10.ipynb

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -209,15 +209,6 @@
209209
"print(\"Using\", device)"
210210
]
211211
},
212-
{
213-
"cell_type": "code",
214-
"execution_count": null,
215-
"metadata": {},
216-
"outputs": [],
217-
"source": [
218-
"# model = googlenet(pretrained=True)"
219-
]
220-
},
221212
{
222213
"cell_type": "markdown",
223214
"metadata": {},

README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -3,27 +3,27 @@
33
- I changed *number of class, filter size, stride, and padding* in the the original code so that it works with CIFAR-10.
44
- I also share the **weights** of these models, so you can just load the weights and use them.
55

6-
## Accuracy of supported models
7-
| No. | Model | Test Accuracy |
8-
|-----|--------------|---------------|
9-
| 1 | vgg11_bn | 92.61% |
10-
| 2 | vgg13_bn | 94.27% |
11-
| 3 | vgg16_bn | 94.07% |
12-
| 4 | vgg19_bn | 94.25% |
13-
| 5 | resnet18 | 93.48% |
14-
| 6 | resnet34 | 93.82% |
15-
| 7 | resnet50 | 94.38% |
16-
| 8 | mobilenet_v2 | 93.85% |
17-
| 9 | densenet121 | 94.76% |
18-
| 10 | googlenet | 95.08% |
6+
## Statistic of supported models
7+
| No. | Model | Test Accuracy | Parameters | State Dict Size |
8+
|-----|--------------|---------------|------------|-----------------|
9+
| 1 | vgg11_bn | 92.61% | 128.813M | 491 MB |
10+
| 2 | vgg13_bn | 94.27% | 128.998M | 492 MB |
11+
| 3 | vgg16_bn | 94.07% | 134.310M | 512 MB |
12+
| 4 | vgg19_bn | 94.25% | 139.622M | 533 MB |
13+
| 5 | resnet18 | 93.48% | 11.174M | 43 MB |
14+
| 6 | resnet34 | 93.82% | 21.282M | 81 MB |
15+
| 7 | resnet50 | 94.38% | 23.521M | 90 MB |
16+
| 8 | mobilenet_v2 | 93.85% | 2.237M | 9 MB |
17+
| 9 | densenet121 | 94.76% | 6.956M | 27 MB |
18+
| 10 | googlenet | 95.08% | 5.491M | 21 MB |
1919

2020
I will add more models...
2121

2222
## How To Use
2323

2424
**Download the weights**
2525

26-
[Google Drive Link (2GB)](https://drive.google.com/file/d/1JNURU6GRDhvMUMqIbxj27gTJ6P9XuAN6/view?usp=sharing) unzip and put the *state_dicts* folder in *models* folder.
26+
Download weights from [Google Drive Link](https://drive.google.com/drive/folders/15jBlLkOFg0eK-pwsmXoSesNDyDb_HOeV?usp=sharing), and put the weights in **models/state_dicts/** folder.
2727

2828
```python
2929
from models import *

0 commit comments

Comments
 (0)