-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparse-ss-output.py
167 lines (149 loc) · 8.29 KB
/
parse-ss-output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# This python program parses somatic sniper output and makes an annovar ready output
# Import relevant modules
import sys
import csv
import os
import argparse
#------------------------------------------------------------------#
# Parser Info
#------------------------------------------------------------------#
parser = argparse.ArgumentParser(description='This program parses somatic sniper calls and makes annovar ready file for further processing.')
parser.add_argument('-s','--sample-info', help='Sample information file [Required]', required=True)
# Get parser arguments
args = vars(parser.parse_args())
sample_file = args['sample_info']
#---------------------------------------------------------------------#
# If sample info path exists then read the file
#---------------------------------------------------------------------#
if (os.path.exists(sample_file)==True):
# Open the input tab-delimited file
myInputTabFile=csv.reader(open(sample_file, "rU"), delimiter='\t', quotechar='|')
# Define the list for storing the information from the sample info file
sample_name = []
normal_bam_file = []
tumor_bam_file = []
path = []
count = 0
# Read the file by the row
for row in myInputTabFile:
# first line contains the bam path
if(count == 0):
path.append(row[1])
# second line contains the local path
if(count == 1):
path.append(row[1])
# from third line we have the sample information
if(count > 1):
# row[0] is sample name
sample_name.append(row[0])
# row[1] is the normal bam file
normal_bam_file.append(row[1])
# row[2] is the tumor bam file
tumor_bam_file.append(row[2])
count=count+1
# Define paths to the directories and tools
somatic_sniper_directory = path[1]+"/"+"somatic_sniper"
SS_PARSER_PATH = "/hopp-storage/HOPP-TOOLS/PIPELINES/MutPipelines/scripts/ss-variants-to-table.sh"
ANNOVAR = "/hopp-storage/HOPP-TOOLS/ANNOTATIONS/annovar-may-2013/annovar/annotate_variation.pl -buildver hg19"
ANNOVAR_DB = "/hopp-storage/HOPP-TOOLS/ANNOTATIONS/annovar-may-2013/annovar/humandb"
COSMIC_ANNO = "/hopp-storage/HOPP-TOOLS/PIPELINES/MutPipelines/scripts/annotate-cosmic-calls.sh"
NOVEL_ANNO = "/hopp-storage/HOPP-TOOLS/PIPELINES/MutPipelines/scripts/annotate-cosmic-filtered-calls.sh"
# Make a cosmic directory if it does not exist
cosmic_directory = somatic_sniper_directory+"/"+"cosmic"
if not os.path.exists(cosmic_directory):
os.makedirs(cosmic_directory)
# Make a directory for non-cosmic mutations if it does not exist
novel_directory = somatic_sniper_directory+"/"+"novel"
if not os.path.exists(novel_directory):
os.makedirs(novel_directory)
# For each sample specified in the sample info file do the processing
for i in range(len(sample_name)):
print "----------------------------------------------------------------------------"
print "Pulling somatic mutations for "+sample_name[i]+" and making tab-delimed format"
print "----------------------------------------------------------------------------"
# Call the script to extract somatic sniper vcf calls and make it into table
os_call = SS_PARSER_PATH+" "+somatic_sniper_directory+" "+sample_name[i]
os.system(os_call)
# The above script creates a temproary folder in the path[1]/somatic_sniper folder
# which has a temproary tab-delimited file that needs to be parsed to make it into annovar format
# Read the tab-delimited temprory file in path[1]/somatic_sniper/tmp directory
tmp_file = somatic_sniper_directory+"/"+"tmp"+"/"+sample_name[i]+".tmp2"
myTmpTabFile = csv.reader(open(tmp_file, "rU"), delimiter='\t', quotechar='|')
# Make a file in the somatic sniper directory and write the output to the file
wrt_file = somatic_sniper_directory+"/"+"SS-"+sample_name[i]+"-SOMATIC.tab"
open_wrt_file = open(wrt_file, "wb")
myWrtFile = csv.writer(open_wrt_file,delimiter='\t')
for row in myTmpTabFile:
# Column 3 is the ref base and columns 7 through 10 are the number of reads
# supporting A,C,G,T in that order
if (row[3] == 'A'):
ref_reads = row[7]
if (row[3] == 'C'):
ref_reads = row[8]
if (row[3] == 'G'):
ref_reads = row[9]
if (row[3] == 'T'):
ref_reads = row[10]
# Column 4 is the alt base and columns 11 through 14 are the number of reads
# supporting A,C,G,T in that order
if (row[4] == 'A'):
alt_reads = row[11]
if (row[4] == 'C'):
alt_reads = row[12]
if (row[4] == 'G'):
alt_reads = row[13]
if (row[4] == 'T'):
alt_reads = row[14]
# Compute normal and tumor allelic frequencies
normal_allelic_frequency = round((float(ref_reads)/float(row[5]))*100,2)
tumor_allelic_frequency = round((float(alt_reads)/float(row[6]))*100,2)
# Filter only somatic mutations, where the germline almost matches reference genome (upto 95%)
if ((float(row[5]) != 0.0) and normal_allelic_frequency > 95):
mutation_row = [row[0],row[1],row[2],row[3],row[4],row[5],row[6], \
normal_allelic_frequency,tumor_allelic_frequency,row[15],sample_name[i], "somatic-sniper", \
sample_name[i]+":"+row[0]+":"+row[1],"point-mutation","1"]
myWrtFile.writerow(mutation_row)
open_wrt_file.close()
# Filter the above somatic mutations through cosmic
print "----------------------------------------------------------------------------"
print "Filtering somatic mutations through cosmic"
print "----------------------------------------------------------------------------"
os_call = ANNOVAR+" "+"-filter -dbtype cosmic64"+" "+wrt_file+" "+"-outfile"+" "+cosmic_directory+"/"+sample_name[i]+" "+ANNOVAR_DB+"/"
os.system(os_call)
# Annotate the cosmic filtered mutations
print "----------------------------------------------------------------------------"
print "Annotating cosmic filtered mutations"
print "----------------------------------------------------------------------------"
os_call = COSMIC_ANNO+" "+cosmic_directory+" "+sample_name[i]
os.system(os_call)
# Filter non-cosmic mutations through 1000g, dbsnp and ESP5400
print "----------------------------------------------------------------------------"
print "Filtering non-cosmic mutations through 1000g"
print "----------------------------------------------------------------------------"
os_call = ANNOVAR+" "+"-filter -dbtype 1000g2010nov_all"+" "+cosmic_directory+"/"+sample_name[i]+".hg19_cosmic64_filtered"+ \
" "+"-outfile"+" "+novel_directory+"/"+sample_name[i]+" "+ANNOVAR_DB+"/"
os.system(os_call)
# Filter 1000g filtered mutations through ESP5400
print "----------------------------------------------------------------------------"
print "Filtering 1000g filtered mutations through ESP5400"
print "----------------------------------------------------------------------------"
os_call = ANNOVAR+" "+"-filter -dbtype vcf -vcfdbfile ESP5400.vcf"+ \
" "+novel_directory+"/"+sample_name[i]+".hg19_ALL.sites.2010_11_filtered"+ \
" "+"-outfile"+" "+novel_directory+"/"+sample_name[i]+" "+ANNOVAR_DB+"/ESP5400"
os.system(os_call)
# Filter ESP5400 filtered mutations through dbSNP132
print "----------------------------------------------------------------------------"
print "Filtering ESP5400 filtered mutations through dbSNP132"
print "----------------------------------------------------------------------------"
os_call = ANNOVAR+" "+"-filter -dbtype snp132"+" "+novel_directory+"/"+sample_name[i]+".hg19_vcf_filtered"+ \
" "+"-outfile"+" "+novel_directory+"/"+sample_name[i]+" "+ANNOVAR_DB+"/"
os.system(os_call)
# Annotate dbSNP132 filtered mutations
print "----------------------------------------------------------------------------"
print "Annotating dbSNP132 filtered mutations"
print "----------------------------------------------------------------------------"
os_call = NOVEL_ANNO+" "+novel_directory+" "+sample_name[i]
os.system(os_call)
else:
print 'Sample information file is non-existent. Please make sure you give valid sample info file with path.'
sys.exit(1)