forked from prashant-jayan21/minecraft-bap-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
642 lines (506 loc) · 19.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import sys, os, re, json, argparse, random, nltk, torch, pickle, numpy as np, copy, git, csv
from glob import glob
from datetime import datetime
from os.path import join, isdir
import xml.etree.ElementTree as ET
from torch.autograd import Variable
from sklearn.model_selection import train_test_split as tt_split
class BuilderActionExample():
def __init__(self, action, built_config, prev_config, action_history):
self.action = action # of type BuilderAction or None
self.built_config = built_config
self.prev_config = prev_config
self.action_history = action_history
def is_action(self):
return isinstance(self.action, BuilderAction)
def is_stop_token(self):
return self.action == None
def __eq__(self, other):
if not isinstance(other, BuilderActionExample):
# don't attempt to compare against unrelated types
return NotImplemented
return self.action == other.action and self.built_config == other.built_config \
and self.prev_config == other.prev_config and self.action_history == other.action_history
class BuilderAction():
""" Class representing a builder's action. """
def __init__(self, block_x, block_y, block_z, block_type,
action_type, weight=None):
"""
Args:
block_x (int): x-coordinate of block involved in action.
block_y (int): y-coordinate of block involved in action.
block_z (int) z-coordinate of block involved in action.
block_type (string): block type (i.e., color).
action_type (string): either "pickup" or "putdown".
"""
assert action_type in ["putdown", "pickup"]
self.action_type = "placement" if action_type == "putdown" else "removal" # Is this correct?
self.block = {
"x": block_x,
"y": block_y,
"z": block_z,
"type": block_type
}
self.weight = weight
def print(self):
print("action type: " + str(self.action_type))
print("x: " + str(self.block["x"]))
print("y: " + str(self.block["y"]))
print("z: " + str(self.block["z"]))
print("type: " + str(self.block["type"]))
print("weight: " + str(self.weight))
def __eq__(self, other):
if not isinstance(other, BuilderAction):
# don't attempt to compare against unrelated types
return NotImplemented
return self.action_type == other.action_type and self.block == other.block \
and self.weight == other.weight
color_regex = re.compile("red|orange|purple|blue|green|yellow") # TODO: Obtain from other repo
# assigning IDs to block types aka colors
type2id = {
"orange": 0,
"red": 1,
"green": 2,
"blue": 3,
"purple": 4,
"yellow": 5
}
id2type = {v: k for k, v in type2id.items()}
# assigning IDs to block placement/removal actions
action2id = {
"placement": 0,
"removal": 1
}
# bounds of the build region
x_min = -5
x_max = 5
y_min = 1
y_max = 9
z_min = -5
z_max = 5 # TODO: Obtain from other repo
x_range = x_max - x_min + 1
y_range = y_max - y_min + 1
z_range = z_max - z_min + 1
# map from label to detailed info about label
label2details = {}
label_index = 0
for x in range(x_min, x_max + 1):
for y in range(y_min, y_max + 1):
for z in range(z_min, z_max + 1):
for cell_action_label in range(7): # 7623 times -- 0 through 7622
label2details[label_index] = (x, y, z, cell_action_label)
label_index += 1
details2struct_dict = {}
for details in label2details.values():
struct = BuilderActionExample( # TODO: can this be simplified by using BuilderAction instead?
action = BuilderAction(
block_x = details[0], block_y = details[1], block_z = details[2],
block_type = id2type[details[3]] if details[3] < 6 else None,
action_type = "putdown" if details[3] < 6 else "pickup",
weight=None
),
built_config = None,
prev_config = None,
action_history = None
)
details2struct_dict[details] = struct
stop_action_label = 7*11*9*11
stop_action_label_tensor = torch.tensor(stop_action_label)
if torch.cuda.is_available():
stop_action_label_tensor = stop_action_label_tensor.cuda()
stop_action_details = None
stop_action_struct = BuilderActionExample(
action = None,
built_config = None,
prev_config = None,
action_history = None
)
def details2struct(details):
if details != None:
return details2struct_dict[details]
else: # stop action
return stop_action_struct
# get repr for decoder input # TODO: dict needed -- like embedding matrix?
def f2(builder_action):
if builder_action.action == None: # start action # TODO: organize cases better
return torch.Tensor([0] * 11)
action_type = builder_action.action.action_type
action_id = action2id[action_type]
action_type_one_hot_vec = [0] * len(action2id)
action_type_one_hot_vec[action_id] = 1
color_one_hot_vec = [0] * len(type2id)
if action_type == "placement":
color = builder_action.action.block["type"]
color_id = type2id[color]
color_one_hot_vec[color_id] = 1
x = builder_action.action.block["x"]
y = builder_action.action.block["y"]
z = builder_action.action.block["z"]
location_vec = [x, y, z]
repr = action_type_one_hot_vec + color_one_hot_vec + location_vec
return torch.Tensor(repr)
def action_label2action_repr(action_label):
assert action_label != stop_action_label
return f2(details2struct(label2details.get(action_label)))
# map from label to detailed info about label
# coords2index = {}
# cell_index = 0
# for x in range(x_min, x_max + 1):
# for y in range(y_min, y_max + 1):
# for z in range(z_min, z_max + 1):
# coords2index[(x, y, z)] = cell_index
# cell_index += 1
def should_prune_seq(seq):
return seq[-1] == stop_action_label
def prune_seq(seq, should_prune_seq):
return seq[:-1] if should_prune_seq else seq
class Logger(object):
""" Simple logger that writes messages to both console and disk. """
def __init__(self, logfile_path):
"""
Args:
logfile_path (string): path to where the log file should be saved.
"""
self.terminal = sys.stdout
self.log = open(logfile_path, "a")
def write(self, message):
""" Writes a message to both stdout and logfile. """
self.terminal.write(message)
self.log.write(message)
self.log.flush()
def flush(self):
pass
class EncoderContext:
"""
Output of an encoder set up for use in a corresponding decoder
- decoder_hidden, decoder_input_concat, etc. point to various ways of conditioning the decoder on the encoder's output
- Each is initialized appropriately with the the encoder's output so as to be used in the decoder
"""
def __init__(self, decoder_hidden=None, decoder_input_concat=None, decoder_hidden_concat=None, decoder_input_t0=None, attn_vec=None):
self.decoder_hidden = decoder_hidden
self.decoder_input_concat = decoder_input_concat
self.decoder_hidden_concat = decoder_hidden_concat
self.decoder_input_t0 = decoder_input_t0
self.attn_vec = attn_vec
def take_last_hidden(hidden, num_hidden_layers, bidirectional, batch_size, rnn_hidden_size):
"""
Args:
hidden: Raw hidden returned from RNN
Returns:
reshape and take only last layer's hidden state
"""
hidden = hidden.view(num_hidden_layers, bidirectional, batch_size, rnn_hidden_size) # (num_layers, num_directions, batch, hidden_size)
hidden = hidden[-1] # hidden: (num_directions, batch, hidden_size)
return hidden
def get_logfiles(data_path, split=None):
"""
Gets all CwC observation files along without the corresponding gold config. According to a given split.
Split can be "train", "test" or "val"
"""
return get_logfiles_with_gold_config(data_path=data_path, gold_configs_dir=None, split=split, with_gold_config=False)
def get_logfiles_with_gold_config(data_path, gold_configs_dir, split=None, with_gold_config=True, from_aug_data=False):
"""
Gets all CwC observation files along with the corresponding gold config, according to a given split.
Split can be "train", "test" or "val"
"""
# get required configs
with open(data_path + "/splits.json") as json_data:
data_splits = json.load(json_data)
configs_for_split = data_splits[split]
# get all postprocessed observation files along with gold config data
jsons = []
all_data_root_dirs = filter(lambda x: isdir(join(data_path, x)), os.listdir(data_path))
for data_root_dir in all_data_root_dirs:
logs_root_dir = join(data_path, data_root_dir, "logs")
all_log_dirs = filter(lambda x: isdir(join(logs_root_dir, x)), os.listdir(logs_root_dir))
for log_dir in all_log_dirs:
config_name = re.sub(r"B\d+-A\d+-|-\d\d\d\d\d\d\d+", "", log_dir)
if config_name not in configs_for_split:
continue
if with_gold_config:
config_xml_file = join(gold_configs_dir, config_name + ".xml")
config_structure = get_gold_config(config_xml_file)
logfile = join(logs_root_dir, log_dir, "postprocessed-observations.json")
with open(logfile) as f:
loaded_json = json.loads(f.read())
loaded_json["from_aug_data"] = from_aug_data
if with_gold_config:
loaded_json["gold_config_name"] = config_name
loaded_json["gold_config_structure"] = config_structure
loaded_json["log_dir"] = log_dir
loaded_json["logfile_path"] = logfile
jsons.append(loaded_json)
return jsons
def get_gold_config(gold_config_xml_file): # TODO: Obtain from other repo
"""
Args:
gold_config_xml_file: The XML file for a gold configuration
Returns:
The gold config as a list of dicts -- one dict per block
"""
with open(gold_config_xml_file) as f:
all_lines = map(lambda t: t.strip(), f.readlines())
gold_config_raw = map(ET.fromstring, all_lines)
displacement = 100 # TODO: Obtain from other repo
def reformat(block):
return {
"x": int(block.attrib["x"]) - displacement,
"y": int(block.attrib["y"]),
"z": int(block.attrib["z"]) - displacement,
"type": color_regex.findall(block.attrib["type"])[0]
}
gold_config = list(map(reformat, gold_config_raw))
return gold_config
def get_built_config(observation):
"""
Args:
observation: The observations for a cetain world state
Returns:
The built config for that state as a list of dicts -- one dict per block
"""
built_config_raw = observation["BlocksInGrid"]
built_config = list(map(reformat, built_config_raw))
return built_config
def get_builder_position(observation):
builder_position = observation["BuilderPosition"]
builder_position = {
"x": builder_position["X"],
"y": builder_position["Y"],
"z": builder_position["Z"],
"yaw": builder_position["Yaw"],
"pitch": builder_position["Pitch"]
}
return builder_position
def reformat(block):
return {
"x": block["AbsoluteCoordinates"]["X"],
"y": block["AbsoluteCoordinates"]["Y"],
"z": block["AbsoluteCoordinates"]["Z"],
"type": color_regex.findall(str(block["Type"]))[0] # NOTE: DO NOT CHANGE! Unicode to str conversion needed downstream when stringifying the dict.
}
def to_var(x, volatile=False):
""" Returns an input as a torch Variable, cuda-enabled if available. """
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def timestamp():
""" Simple timestamp marker for logging. """
return "["+datetime.now().strftime('%Y-%m-%d %H:%M:%S')+"]"
def print_dir(path, n):
path = os.path.abspath(path).split("/")
return "/".join(path[len(path)-n:])
def tokenize(utterance):
tokens = utterance.split()
fixed = ""
modified_tokens = set()
for token in tokens:
original = token
# fix *word
if len(token) > 1 and token[0] == '*':
token = '* '+token[1:]
# fix word*
elif len(token) > 1 and token[-1] == '*' and token[-2] != '*':
token = token[:-1]+' *'
# fix word..
if len(token) > 2 and token[-3] is not '.' and ''.join(token[-2:]) == '..':
token = token[:-2]+' ..'
# split axb(xc) to a x b (x c)
if len(token) > 2:
m = re.match("([\s\S]*\d+)x(\d+[\s\S]*)", token)
while m:
token = m.groups()[0]+' x '+m.groups()[1]
m = re.match("([\s\S]*\d+)x(\d+[\s\S]*)", token)
if original != token:
modified_tokens.add(original+' -> '+token)
fixed += token+' '
return nltk.tokenize.word_tokenize(fixed.strip()), modified_tokens
def get_config_params(config_file):
with open(config_file, 'r') as f:
config_content = f.read()
config_params = {}
ignore_params = ['model_path', 'data_dir', 'log_step', 'epochs', 'stop_after_n', 'num_workers', 'seed', 'suppress_logs']
for line in config_content.split('\n'):
if len(line.split()) != 2:
continue
(param, value) = line.split()
if not any(ignore_param in param for ignore_param in ignore_params):
config_params[param] = parse_value(value)
return config_content, config_params
def parse_value(value):
if value == 'None':
return None
try:
return int(value)
except ValueError:
try:
return float(value)
except ValueError:
if value.lower() == 'true' or value.lower() == 'false':
return str2bool(value)
return value
def str2bool(v):
return v.lower() == "true"
def load_pkl_data(filename):
with open(filename, 'rb') as f:
data = pickle.load(f)
print("Loaded data from '%s'" %os.path.realpath(f.name))
return data
def save_pkl_data(filename, data, protocol=3):
with open(filename, 'wb') as f:
pickle.dump(data, f, protocol=protocol)
print("Saved data to '%s'" %os.path.realpath(f.name))
def get_perspective_coordinates(x, y, z, yaw, pitch):
# construct vector
v = np.matrix('{}; {}; {}'.format(x, y, z))
# construct yaw rotation matrix
theta_yaw = np.radians(-1 * yaw)
c, s = np.cos(theta_yaw), np.sin(theta_yaw)
R_yaw = np.matrix('{} {} {}; {} {} {}; {} {} {}'.format(c, 0, -s, 0, 1, 0, s, 0, c))
# multiply
v_new = R_yaw * v
# construct pitch rotation matrix
theta_pitch = np.radians(pitch)
c, s = np.cos(theta_pitch), np.sin(theta_pitch)
R_pitch = np.matrix('{} {} {}; {} {} {}; {} {} {}'.format(1, 0, 0, 0, c, s, 0, -s, c))
# multiply
v_final = R_pitch * v_new
x_final = v_final.item(0)
y_final = v_final.item(1)
z_final = v_final.item(2)
return (x_final, y_final, z_final)
vf = np.vectorize(get_perspective_coordinates)
def get_perspective_coord_repr(builder_position):
bx = builder_position["x"]
by = builder_position["y"]
bz = builder_position["z"]
yaw = builder_position["yaw"]
pitch = builder_position["pitch"]
perspective_coords = np.zeros((3, x_range, y_range, z_range))
for x in range(x_range):
for y in range(y_range):
for z in range(z_range):
xm, ym, zm = x-bx, y-by, z-bz
perspective_coords[0][x][y][z] = xm
perspective_coords[1][x][y][z] = ym
perspective_coords[2][x][y][z] = zm
px, py, pz = vf(perspective_coords[0], perspective_coords[1], perspective_coords[2], yaw, pitch)
return np.stack([px, py, pz])
def add_action_type(action, placement_or_removal):
assert placement_or_removal in ["placement", "removal"]
action_copy = copy.deepcopy(action)
action_copy["action_type"] = placement_or_removal
return action_copy
architect_prefix = "<Architect> "
builder_prefix = "<Builder> "
def get_data_splits(args):
"""
Writes a file containing the train-val-test splits at the config level
"""
# utils
warmup_configs_blacklist = ["C3", "C17", "C32", "C38"] # TODO: import from another repo
# get all gold configs
gold_configs = []
for gold_config_xml_file in glob(args.gold_configs_dir + '/*.xml'):
gold_config = gold_config_xml_file.split("/")[-1][:-4]
gold_configs.append(gold_config)
# filter out warmup ones
gold_configs = list(filter(lambda x: x not in warmup_configs_blacklist, gold_configs))
# split
train_test_split = tt_split(gold_configs, random_state=args.seed) # default is 0.75:0.25
train_configs = train_test_split[0]
test_configs = train_test_split[1]
train_val_split = tt_split(train_configs, random_state=args.seed) # default is 0.75:0.25
train_configs = train_val_split[0]
val_configs = train_val_split[1]
# write split to file
splits = {
"train": train_configs,
"val": val_configs,
"test": test_configs
}
with open(args.data_path + "/splits.json", "w") as file:
json.dump(splits, file)
def get_augmented_data_splits(data_path, gold_configs_dir, splits_json_for_orig_data):
def find_set(orig_gold_config, orig_data_splits):
if orig_gold_config in orig_data_splits["train"]:
return "train"
elif orig_gold_config in orig_data_splits["val"]:
return "val"
elif orig_gold_config in orig_data_splits["test"]:
return "test"
else:
return None # warmup config
# load original data splits
with open(splits_json_for_orig_data) as json_data:
orig_data_splits = json.load(json_data)
# get all gold configs in augmented data
gold_configs = []
for gold_config_xml_file in glob(gold_configs_dir + '/*.xml'):
gold_config = gold_config_xml_file.split("/")[-1][:-4]
gold_configs.append(gold_config)
# split
aug_data_splits = {
"train": [],
"val": [],
"test": []
}
for gold_config in gold_configs:
# find right set -- train/test/val
corresponding_orig_gold_config = gold_config.split("_")[0]
split_set = find_set(corresponding_orig_gold_config, orig_data_splits)
# assign to a set iff it's not a warmup config
if split_set:
aug_data_splits[split_set].append(gold_config)
with open(data_path + "/splits.json", "w") as f:
json.dump(aug_data_splits, f)
print("\nSaving git commit hashes ...\n")
write_commit_hashes("..", data_path, filepath_modifier="_splits_json")
def is_feasible_next_removal(block, built_config):
block_exists = any(
existing_block["x"] == block["x"] and existing_block["y"] == block["y"] and existing_block["z"] == block["z"] for existing_block in built_config
)
return block_exists
def initialize_rngs(seed, use_cuda=False):
np.random.seed(seed) # cpu vars
torch.manual_seed(seed) # cpu vars
random.seed(seed) # Python
if use_cuda:
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # gpu vars
# torch.backends.cudnn.deterministic = True #needed
# torch.backends.cudnn.benchmark = False
def get_commit_hashes(models_repo_path):
models_repo = git.Repo(models_repo_path)
models_repo_commit_hash = models_repo.head.object.hexsha
return models_repo_commit_hash
def write_commit_hashes(models_repo_path, dir_to_write, filepath_modifier=""):
models_repo_commit_hash = get_commit_hashes(models_repo_path)
all_csv_content = [
{
"repo_type": "models_repo",
"repo_path": os.path.abspath(models_repo_path),
"commit_hash": models_repo_commit_hash
}
]
keys = all_csv_content[0].keys()
with open(os.path.join(dir_to_write, "commit_hashes" + filepath_modifier + ".csv"), 'w') as output_file:
dict_writer = csv.DictWriter(output_file, keys)
dict_writer.writeheader()
dict_writer.writerows(all_csv_content)
if __name__ == "__main__":
"""
Use this section for generating the splits files (you shouldn't need to run this -- think carefully about what you are doing).
"""
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='../data/logs/', help='path for data jsons')
parser.add_argument('--gold_configs_dir', type=str, default='../data/gold-configurations/', help='path for gold config xmls')
parser.add_argument('--aug_data_dir', type=str, default='../data/augmented/', help='path for aug data')
parser.add_argument('--seed', type=int, default=1234, help='random seed')
args = parser.parse_args()
initialize_rngs(args.seed, torch.cuda.is_available())
# get_data_splits(args)
get_augmented_data_splits(
os.path.join(args.aug_data_dir, "logs"),
os.path.join(args.aug_data_dir, "gold-configurations"),
os.path.join(args.data_path, "splits.json")
)