-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpipeline.py
372 lines (303 loc) · 13.7 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import random
import numpy as np
import torch
import os
from tqdm import tqdm
import torch.nn as nn
import time
from torch.utils.data import TensorDataset,DataLoader
from sklearn.metrics import classification_report,f1_score, accuracy_score,precision_score,recall_score
import torchmetrics
from fastNLP import logger
from datetime import datetime,timedelta
class Trainer(object):
def __init__(self,train_dataloader, model, optimizer, scheduler,
update_every=1,n_epochs=10, print_every=5,early_stop=5,
dev_dataloader=None, validate_every=-1, save_path=None,metrics=None,
customize_model_name = None,seed = 125,debug=False,
save_last=True,writer=None,call_back=None):
self.device = list(model.parameters())[0].device
self.model = model
self.save_last = save_last
self.train_data = train_dataloader
self.dev_data = dev_dataloader
self.optimizer = optimizer
self.scheduler = scheduler
self._set_seed(seed)
self.n_epochs = int(n_epochs)
self.print_every = int(print_every)
self.validate_every = int(validate_every) if validate_every != 0 else -1
self.step = 0
self.update_every = int(update_every)
self._update = self._update_with_warmup if self.scheduler else self._update_without_warmup
self.n_steps = len(self.train_data) * self.n_epochs
self.callback = call_back
self.flag = 0 # count(eval_data performance is better self.best_score)
self.early_stop = early_stop if early_stop else self.n_steps
self.best_dev_epoch = 0
self.best_dev_step = 0
self.best_dev_perf = 0
if metrics and isinstance(metrics,list):
self.metrics = metrics
self.indicator = 'f'
else:
self.metrics = None
self.writer = writer
self.save_path = save_path if not debug else None
self.customize = customize_model_name if customize_model_name else ''
if self.dev_data is not None and self.metrics is not None:
self.tester = Tester(self.model,self.metrics)
def _grad_backward(self, loss):
"""Compute gradient with link rules.
:param loss: a scalar where back-prop starts
For PyTorch, just do "loss.backward()"
"""
if (self.step-1) % self.update_every == 0:
self.model.zero_grad()
loss.backward()
def train(self, load_best_model=True):
"""
使用该函数使Trainer开始训练。
:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
最好的模型参数。
:return dict: 返回一个字典类型的数据,
内含以下内容::
seconds: float, 表示训练时长
以下三个内容只有在提供了dev_data的情况下会有。
best_eval: Dict of Dict, 表示evaluation的结果。第一层的key为Metric的名称,
第二层的key为具体的Metric
best_epoch: int,在第几个epoch取得的最佳值
best_step: int, 在第几个step(batch)更新取得的最佳值
"""
results = {}
if self.n_epochs <= 0:
logger.info(f"training epoch is {self.n_epochs}, nothing was done.")
results['seconds'] = 0.
return results
self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))
start_time = time.time()
logger.info("training epochs started " + self.start_time)
self.model_name = "_".join(['best', self.model.__class__.__name__, self.start_time, self.customize])
# 模型训练
self.model.train()
self._train()
self.end_run()
# 模型保存和加载
if self.save_last:
self._save_model(self.model,"_".join(['last', self.model.__class__.__name__, self.start_time, self.customize]))
if self.dev_data is not None and self.best_dev_perf is not None:
logger.info(
"\nIn Epoch:{}/Step:{}, got best dev performance:{}".format(self.best_dev_epoch, self.best_dev_step,self.best_dev_perf))
results['best_eval'] = self.best_dev_perf
results['best_epoch'] = self.best_dev_epoch
results['best_step'] = self.best_dev_step
if load_best_model:
load_succeed = self._load_model(self.model, self.model_name)
if load_succeed:
logger.info("Reloaded the best model.")
else:
logger.info("Fail to reload best model.")
results['minutes'] = round((time.time() - start_time)/60, 2)
return results
def _train(self):
self.step = 0
self.epoch = 0
avg_loss = 0
start_time = time.time()
pbar = tqdm(total=self.n_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True)
for epoch in range(1,self.n_epochs+1):
self.epoch = epoch
pbar.set_description_str(desc='Epoch {}/{}'.format(self.epoch,self.n_epochs))
self.callback.on_epoch_begin(self.epoch)
for batch_x,batch_y in self.train_data:
self.step += 1
self._move_to_device(batch_x)
self._move_to_device(batch_y)
model_output = self.model(**{**batch_x, **batch_y })
# 损失计算
loss = model_output.get('loss')
loss = loss.mean()
avg_loss += loss.item()
# 反向传播
loss = loss / self.update_every
self._grad_backward(loss)
# 梯度更新
self._update()
if self.step % self.print_every == 0:
avg_loss = float(avg_loss) / self.print_every
pbar.update(self.print_every)
end_time = time.time()
diff = timedelta(seconds=round(end_time - start_time))
print_output = "[epoch: {:>3} step: {:>4}] train_batch_loss: {:>4.6} time: {}".format(
epoch, self.step, avg_loss,diff)
pbar.set_postfix_str(print_output)
avg_loss = 0
# evaluation
if ((self.validate_every > 0 and self.step % self.validate_every == 0) or
(self.validate_every < 0 and self.step % len(self.train_data) == 0)) \
and self.dev_data is not None and self.metrics is not None:
eval_res = self._do_validation(self.dev_data)
eval_str = "Evaluation on dev at Epoch {}/{}. Step {}/{} ".format(epoch, self.n_epochs, self.step,
self.n_steps)
logger.info(eval_str)
logger.info('{}'.format(_format_eval_results(eval_res)) + '\n')
self.model.train()
if self.flag > self.early_stop:
logger.info('Earlystop at Epoch {}/{} Step {}/{}'.format(self.epoch,self.n_epochs,self.step,self.n_steps))
return
def _move_to_device(self,data):
for key in data:
data[key] = data[key].to(self.device)
def end_run(self):
if self.writer:
self.writer.close()
def _update_with_warmup(self):
"""Perform weight update on a model.
"""
if (self.step) % self.update_every == 0:
self.optimizer.step()
self.scheduler.step()
def _update_without_warmup(self):
"""Perform weight update on a model.
"""
if (self.step) % self.update_every == 0:
self.optimizer.step()
def _do_validation(self,dev_dataloader):
# eval_data result
eval_res = self.tester.test(dev_dataloader)
eval_score = eval_res.get(self.indicator)
if eval_score > self.best_dev_perf:
self.flag = 0
self.best_dev_perf = eval_score
self.best_dev_epoch = self.epoch
self.best_dev_step = self.step
print("****** Best {} ({}) update ****".format(self.indicator,eval_score))
# Save a trained model
if self.save_path is not None:
self._save_model(self.model, self.model_name)
else:
self.flag += 1
return eval_res
def _save_model(self, model, model_name, only_param=False):
""" 存储不含有显卡信息的state_dict或model
:param model:
:param model_name:
:param only_param:
:return:
"""
if self.save_path is not None:
model_path = os.path.join(self.save_path, model_name)
if not os.path.exists(self.save_path):
os.makedirs(self.save_path, exist_ok=True)
if _model_contains_inner_module(model):
model = model.module
if only_param:
state_dict = model.state_dict()
for key in state_dict:
state_dict[key] = state_dict[key].cpu()
torch.save(state_dict, model_path)
else:
model.cpu()
torch.save(model, model_path)
model.to(self.device)
def _load_model(self, model, model_name, only_param=False):
# 返回bool值指示是否成功reload模型
if self.save_path is not None:
model_path = os.path.join(self.save_path, model_name)
if not os.path.exists(model_path):
raise FileNotFoundError("file `{}` does not exist. Please make sure model are there.".format(model_name))
if only_param:
states = torch.load(model_path)
else:
states = torch.load(model_path).state_dict()
if _model_contains_inner_module(model):
model.module.load_state_dict(states)
else:
model.load_state_dict(states)
else:
return False
return True
def _set_seed(self,seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if self.device == 'gpu':
torch.cuda.manual_seed_all(seed)
class Tester(object):
def __init__(self,model,metrics = None):
self.model = model
self.device = list(model.parameters())[0].device
self.metrics = metrics
def predict(self, dataloader):
'''
return:
result = {
'infer_logits': inference_logits,
'infer_labels': inference_labels,
'gold_labels': gold_labels
}
'''
if self.model is None:
raise FileNotFoundError("model not been loaded.")
self.model.eval()
inference_labels = []
for batch_x,batch_y in dataloader:
self._move_to_device(batch_x)
self._move_to_device(batch_y)
with torch.no_grad():
model_output = self.model(**{**batch_x, **batch_y})
pred = model_output.get('pred')
inference_labels.append(pred.to('cpu'))
inference_labels = np.concatenate(inference_labels, 0)
result = {
'pred': inference_labels,
}
return result
def test(self, dataloader):
'''
return:
batch_loss,eval_result
'''
self.model.eval()
for batch_x,batch_y in dataloader:
self._move_to_device(batch_x)
self._move_to_device(batch_y)
with torch.no_grad():
model_output = self.model(**{**batch_x, **batch_y})
# pred =model_output.get('pred')
batch_res = evaluate(self.metrics, model_output, batch_y)
# 记录损失和步次
eval_res = compute_metrics(self.metrics)
return eval_res
def _move_to_device(self,data):
for key in data:
data[key] = data[key].to(self.device)
def _model_contains_inner_module(model):
"""
:param nn.Module model: 模型文件,判断是否内部包含model.module, 多用于check模型是否是nn.DataParallel,
nn.parallel.DistributedDataParallel。主要是在做形参匹配的时候需要使用最内部的model的function。
:return: bool
"""
if isinstance(model, nn.Module):
if isinstance(model, (nn.DataParallel, nn.parallel.DistributedDataParallel)):
return True
return False
def compute_metrics(metrics,reset=True):
res = {}
for _metrics in metrics:
res.update(_metrics.get_metric(reset))
return res
def evaluate(metrics, y_pred,y_true):
# report = classification_report(y_true, y_pred, output_dict=True)
# f1 = f1_score(y_true,y_pred,average='macro')
# acc = accuracy_score(y_true,y_pred)
# precision = precision_score(y_true, y_pred, average='macro')
# recall = recall_score(y_true, y_pred, average='macro')
# eval_res={'f1':f1,'acc':acc,'precision':precision,'recall':recall}
for _metrics in metrics:
_metrics(y_pred,y_true)
def _format_eval_results(results):
"""Override this method to support more print formats.
"""
_str = ", ".join([str(key) + ":" + '{:.4f}'.format(value) for key, value in results.items()])
return _str