forked from sidtechnical/hakuna-metadata-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tool-iOS.py
565 lines (384 loc) · 24.8 KB
/
tool-iOS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import shutil, sqlite3, glob, re, json, unicodedata, string, dateutil, webbrowser, requests
from os.path import expanduser
import pandas as pd
from pandas.tseries.resample import TimeGrouper
from urlparse import urlparse, parse_qs
from collections import defaultdict
import nltk
from nltk.tokenize import word_tokenize
from nltk import FreqDist
from nltk.corpus import stopwords
from nltk.tag.stanford import StanfordNERTagger
from nltk.internals import find_jars_within_path
from bs4 import BeautifulSoup
from plotly.offline.offline import *
from plotly.graph_objs import *
from wordcloud import WordCloud
from nltk.internals import find_jars_within_path
# parser = StanfordParser(model_path="path/to/englishPCFG.ser.gz")
##################### ENV setting #################################################################
os.environ['CLASSPATH'] = "assets/stanford-ner-2016-10-31"
st = StanfordNERTagger('assets/stanford-ner-2016-10-31/classifiers/english.all.3class.distsim.crf.ser.gz')
# st._classpath = tuple(find_jars_within_path('assets/stanford-ner-2015-04-20'))
###################################################################################################
########################### Generic functions begins ##############################################
#Copying the place.sqlite file to local folder to the current local direcotry
def copy_browser_history_database():
shutil.copy2(glob.glob(expanduser("~") + '/Library/Application Support/Firefox/Profiles/*/places.sqlite')[0] , "browser_history_database.sqlite3")
# Create a dataframe from local copy of browser history database i.e. from the place.sqalite
def create_browser_history_dataframe(browser_history_database):
query = "select datetime(moz_historyvisits.visit_date/1000000, 'unixepoch', 'localtime') as recent_visit, moz_places.url as url_location, moz_places.title as name, moz_places.visit_count as visit_count, moz_places.frecency as frecency from moz_places, moz_historyvisits where moz_historyvisits.place_id = moz_places.id order by moz_historyvisits.visit_date desc;"
con = sqlite3.connect(browser_history_database, timeout=5)
browser_history_dataframe = pd.read_sql_query(query, con)
con.close()
return browser_history_dataframe
# Seperate the URLs for further analysis
def seperate_the_dataframes(dataframe,url_string):
return dataframe[dataframe['url_location'].str.contains(url_string)]
########################### Generic functions ends ################################################
########################### Facebook functions begins ##############################################
#Classifying the (Facebook) urls into photo, event, profile, group, search and messages
def Facebook_URL_Categorizre(URL):
# print "categorizing Facebook URLs"
category_tag = ''
if urlparse(URL).netloc=="www.facebook.com":
if "photo" in urlparse(URL).path:
category_tag = "photo"
elif "search" in urlparse(URL).path and "message" not in urlparse(URL).path and "photo" not in urlparse(URL).path and "group" not in urlparse(URL).path:
category_tag = "search"
elif "group" in urlparse(URL).path:
category_tag = "group"
elif "message" in urlparse(URL).path:
category_tag = "message"
elif "events" in urlparse(URL).path:
category_tag = "event"
elif "posts" in urlparse(URL).path:
category_tag = "posts"
else:
category_tag = "profile"
return category_tag
def cleanup_facebook_dataframe(dataframe):
#Remove the repeated profile urls
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/"]
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/#"]
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/?_rdr=p"]
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/?_rdr=p#"]
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/?q="]
dataframe = dataframe[dataframe.url_location != "https://www.facebook.com/?ref=tn_tnmn"]
repeated_facebook_pages_words = ["people","settings", "dyi?", "react", "help", "support", "utm_source", "preview_cover" , "/?q=#/", "video.php" , "recover" ,"react", "login", "password", "l.php?", "viewas", "insights", "story_id", "sharer.php" ,"about" ,"pages", "?stype=lo", "homepage", "app_data", "ft[qid]" , "safetycheck","l.php?u=https", "location=profile_browser", "?next=", "friends" ,"videos", "?entry_point=", "deactivate", "careers", "saved", "timeline", "page_user_activity", "notif_t=page_fan", "manager", "notifications", "media", "notif", "oauth"]
facebook_pattern = '|'.join(map(re.escape, repeated_facebook_pages_words))
dataframe = dataframe[~dataframe.url_location.str.contains(facebook_pattern)]
return dataframe
def url_cleanup(url):
parsed_url = urlparse(url)
qry = parsed_url.query
path = parsed_url.path
if 'profile.php' in path:
result = re.search('id=(\d+)',qry)
return 'https://www.facebook.com/'+result.group(1)
else:
return "https://www.facebook.com"+parsed_url.path
def name_extractor(URL, Name):
try:
if not Name or 'Facebook' in Name:
return urlparse(URL).path.split("/",1)[1] #Prints
else:
return(''.join(c for c in Name.split(' - ')[0] if c.isalpha() or c in ' .').strip())
except IndexError:
print URL, Name
def create_json_for_circle_packing(Domain, dataframe):
gp = dataframe.groupby(['visit_count'])
dict_json = {"name": Domain}
children = []
for name, group in gp:
temp = {"name": name, "children": []}
rgp = group.groupby(['frecency'])
for n, g in rgp:
temp["children"].append({
"name": n,
"children": [
{"name": row["real_name"],
"size": row["visit_count"] * 1000 / len(g)}
for _, row in g.iterrows()
]
})
children.append(temp)
dict_json["children"] = children
return dict_json
########################### Facebook functions ends ##############################################
########################### Twitter fucntions begin ##############################################
def twitter_url_cleanup(url):
parsed_url = urlparse(url)
if not parsed_url.path or parsed_url.path!="/":
return 'https://www.twitter.com/'+ parsed_url.path.split("/",1)[1].split("/",1)[0]
def twitter_name_extractor(URL, Name):
try:
if 'on Twitter' in Name or 'Twitter / Notifications' in Name:
return URL.split("https://www.twitter.com/",1)[1]
elif not Name or Name!='Twitter / ?':
real_name = Name.split("|",1)[0].split("(",1)[0]
if not real_name or Name =='Twitter / ?':
# print "It was empty"
return URL.split("https://www.twitter.com/",1)[1] #real_name
else:
return real_name #URL.split("https://www.twitter.com/",1)[1]
except:
return URL.split("https://www.twitter.com/",1)[1]
########################### Twitter functions ends ##############################################
########################### Google functions begins ##############################################
def Google_search_query_keywords(URL, Name):
if not Name:
parsed_url = urlparse(URL)
if "google" in parsed_url.netloc and parsed_url.path=='/search':
query_dict = parse_qs(parsed_url.query, keep_blank_values=True)
for k, v in query_dict.iteritems():
if k=="q":
return v[0]
else:
return ""
else:
return Name.split("- Google Search",1)[0]
########################### Google functions ends ##############################################
########################### Browsing pattern functions starts ##############################################
def Count_Unique_URLs(URL_List):
return len(URL_List)
def strip_time(DateValue):
return DateValue.time()
def strip_date(DateValue):
return DateValue.date()
########################### Browsing pattern functions ends ##############################################
########################### NER functions starts #########################################################
def netloc_extractor(URL):
return urlparse(URL).netloc
def remove_SE_SM(dataframe):
SocMedia_SearchEngines = ["mail", "gmail.com", "drive", "dropbox" ,"soundcloud.com", "spotify.com", "youtube.com","github.com", "stackoverflow.com", "facebook.com","twitter.com","google","amazon", "duckduckgo", "disconnect", "airbnb", "booking", "linkedin"]
dataframe = dataframe[~dataframe.netloc.str.contains('|'.join(SocMedia_SearchEngines))]
return dataframe
def grab_website_text(url_list):
cert = "assets/certs.pem"
text_blob = ""
text_list_dummy =[]
for url in url_list:
try:
result = requests.get(url, verify= cert)
result.raise_for_status()
html = result.content
soup = BeautifulSoup(html)
# remove all script and style elements
for script in soup(["script", "style"]):
script.extract()
# get text
try:
text = soup.body.get_text()
# break into lines and remove leading and trailing space on each
lines = (line.strip() for line in text.splitlines())
# break multi-headlines into a line each
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
# drop blank lines
text = ' '.join(chunk for chunk in chunks if chunk)
except AttributeError:
text = ""
text_list_dummy.append(text)
except requests.exceptions.RequestException:
text_list_dummy.append("")
text_blob = '\n'.join(text_list_dummy)
return text_blob
def NER_string(NER_list):
NER_str = ""
for item in NER_list:
NER_str +=str(item)
NER_str += " | "
return NER_str
def create_stopword_free_text(text_to_process):
stoplist = stopwords.words('english')
more_sw = "a about above across after again against all almost alone along already also although always am among an and another any anybody anyone anything anywhere are area areas aren't around as ask asked asking asks at away b back backed backing backs be became because become becomes been before began behind being beings below best better between big both but by c came can cannot can't case cases certain certainly clear clearly come could couldn't d did didn't differ different differently do does doesn't doing done don't down downed downing downs during e each early either end ended ending ends enough even evenly ever every everybody everyone everything everywhere f face faces fact facts far felt few find finds first for four from full fully further furthered furthering furthers g gave general generally get gets give given gives go going good goods got great greater greatest group grouped grouping groups h had hadn't has hasn't have haven't having he he'd he'll her here here's hers herself he's high higher highest him himself his how however how's i i'd if i'll i'm important in interest interested interesting interests into is isn't it its it's itself i've j just k keep keeps kind knew know known knows l large largely last later latest least less let lets let's like likely long longer longest m made make making man many may me member members men might more most mostly mr mrs much must mustn't my myself n necessary need needed needing needs never new newer newest next no nobody non noone nor not nothing now nowhere number numbers o of off often old older oldest on once one only open opened opening opens or order ordered ordering orders other others ought our ours ourselves out over own p part parted parting parts per perhaps place places point pointed pointing points possible present presented presenting presents problem problems put puts q quite r rather really right room rooms s said same saw say says second seconds see seem seemed seeming seems sees several shall shan't she she'd she'll she's should shouldn't show showed showing shows side sides since small smaller smallest so some somebody someone something somewhere state states still such sure t take taken than that that's the their theirs them themselves then there therefore there's these they they'd they'll they're they've thing things think thinks this those though thought thoughts three through thus to today together too took toward turn turned turning turns two u under until up upon us use used uses v very w want wanted wanting wants was wasn't way ways we we'd well we'll wells went were we're weren't we've what what's when when's where where's whether which while who whole whom who's whose why why's will with within without won't work worked working works would wouldn't x y year years yes yet you you'd you'll young younger youngest your you're yours yourself yourselves you've z"
stoplist += more_sw.split()
# Tokenize the text into words using NLTK library
scrapped_words = nltk.tokenize.word_tokenize(text_to_process)
# Remove single-character tokens (mostly punctuation)
scrapped_words = [word for word in scrapped_words if len(word) > 1]
# Remove numbers
scrapped_words = [word for word in scrapped_words if not word.isdigit()]
# Lowercase all words (default_stopwords are lowercase too)
scrapped_words = [word.lower() for word in scrapped_words]
# Remove stopwords
scrapped_words = [word for word in scrapped_words if word not in stoplist]
punctuations = list(string.punctuation)
punctuations.extend(("''", "//", "--","..."))
#Remove punctuations
scrapped_words = [word for word in scrapped_words if word not in punctuations]
return NER_string(scrapped_words)
def create_NER_strings(textblob_text):
ne_tagged_sent = st.tag(textblob_text.split())
Organization = []
Location = []
Person = []
for x,y in ne_tagged_sent:
if y == 'ORGANIZATION':
Organization.append(x)
elif y== 'LOCATION':
Location.append(x)
elif y == 'PERSON':
Person.append(x)
Org_values = NER_string(Organization)
Per_values = NER_string(Person)
Loc_values = NER_string(Location)
return Org_values, Per_values, Loc_values
########################### NER functions ends #########################################################
if __name__ == "__main__":
print "################################################################################################"
print "Please be patient. This might take a while. \nWhen the tool completes running, it automatically opens a browser tab and displays the visuals."
print "\nUnless the program stops with errors, ignore the warnings/messages if any."
print "\nIf you want to interrupt the program execution, please press CTRL+C."
print "################################################################################################"
#Copy Firefox Browser History database i.e place.sqlite to current folder
copy_browser_history_database()
# create the dataframe from local copy of brwoser history database
browser_history_dataframe = create_browser_history_dataframe("browser_history_database.sqlite3")
os.system("python assets/pages/stats.py")
#Seperate Facebook URLs from the browser_history_dataframe
facebook_df = seperate_the_dataframes(browser_history_dataframe,"facebook.com")
#Clean up the facebook dataframe to remove unwanted urls
facebook_df = cleanup_facebook_dataframe(facebook_df)
#classify the urls into photo, event, profile, group, search, post and messages;
# add a new column "category_tags to the facebook_df
facebook_df['category_tags']= facebook_df.apply(lambda row: Facebook_URL_Categorizre(row['url_location']), axis=1)
#Copy only the "profile" URLs to a new dataframe
facebook_profile_df = facebook_df.loc[facebook_df['category_tags']=='profile']
if len(facebook_profile_df) == 0:
print "\nno facebook profile data found"
else:
#Remove duplicates and copy to a new dataframe
facebook_profile_clean =facebook_profile_df.drop_duplicates(['url_location'])
sorted_facebook_profile_clean = facebook_profile_clean.sort_values(['visit_count', 'frecency'], ascending=[False, False])
current_user = sorted_facebook_profile_clean ['name'].iloc[0]
current_user_url = sorted_facebook_profile_clean ['url_location'].iloc[0]
facebook_profile_clean_without_current_user = sorted_facebook_profile_clean[~sorted_facebook_profile_clean.url_location.str.contains(current_user_url)]
pd.options.mode.chained_assignment = None
facebook_profile_clean_without_current_user['url_location']= facebook_profile_clean_without_current_user.apply(lambda row: url_cleanup(row['url_location']), axis=1)
pd.options.mode.chained_assignment = None
facebook_profile_clean_without_current_user['real_name']= facebook_profile_clean_without_current_user.apply(lambda row: name_extractor(row['url_location'], row['name']), axis=1)
Facebook_Profile_list = facebook_profile_clean_without_current_user.drop_duplicates(['url_location'])
Facebook_Profile_list_Final = Facebook_Profile_list[['real_name','url_location', 'visit_count','frecency']]
facebook_json = create_json_for_circle_packing("Facebook", Facebook_Profile_list_Final.nlargest(100, 'visit_count'))
with open('assets/pages/facebook_profiles.json', 'w') as outfile:
json.dump(facebook_json, outfile)
######################## End of Facebook related script ###################################################
######################## Start of Twitter related script ##################################################
twitter_df= browser_history_dataframe[browser_history_dataframe['url_location'].str.contains("https://twitter.com")]
twitter_stop_words = ["notifications","following","careers","url", "jobs", "support","status","likes", "settings","moments","help","search","account","widgets","hashtag","intent", "about"]
twitter_pattern = '|'.join(map(re.escape, twitter_stop_words))
twitter_df = twitter_df[~twitter_df.url_location.str.contains(twitter_pattern)]
if len(twitter_df) == 0:
print "\nno twitter profile data found"
else:
twitter_df['url_location']= twitter_df.apply(lambda row: twitter_url_cleanup(row['url_location']), axis=1)
twitter_df= twitter_df[twitter_df.url_location.notnull()]
twitter_df2 = twitter_df.drop_duplicates(['url_location'])
sorted_twitter_df = twitter_df2.sort_values(['visit_count', 'frecency'], ascending=[False, False])
current_user_twitter = sorted_twitter_df['name'].iloc[0]
current_user_url_twitter = sorted_twitter_df['url_location'].iloc[0]
twitter_df_without_current_user = sorted_twitter_df[~sorted_twitter_df.url_location.str.contains(current_user_url_twitter)]
pd.options.mode.chained_assignment = None
twitter_df_without_current_user['real_name']= twitter_df_without_current_user.apply(lambda row: twitter_name_extractor(row['url_location'], row['name']), axis=1)
Twitter_Profile_Final = twitter_df_without_current_user[['real_name','url_location', 'visit_count','frecency']]
twitter_json = create_json_for_circle_packing("Twitter", Twitter_Profile_Final.nlargest(100, 'visit_count'))
with open('assets/pages/twitter_profiles.json', 'w') as outfile:
json.dump(twitter_json, outfile)
#################### End of Twitter related script ###################################################
#################### Start of Google related script ##################################################
google_df= browser_history_dataframe[browser_history_dataframe['url_location'].str.contains("www.google.")]
google_df = google_df[google_df.url_location != "https://www.google.com/"]
google_stop_words = ["url","gmail","maps", "intl", "inputtools", "gfe_rd", "landing", "accounts" "textise"]
google_pattern = '|'.join(map(re.escape, google_stop_words))
google_df = google_df[~google_df.url_location.str.contains(google_pattern)]
google_df['search_query']= google_df.apply(lambda row: Google_search_query_keywords(row['url_location'], row['name']), axis=1)
google_df = google_df[google_df.search_query.notnull()]
google_df = google_df.drop_duplicates(['search_query'])
#Preparing the data for graph
# Convert the column of search queries to a list
query_list = google_df['search_query'].tolist()
# Combine all the list elements to a text blob and then encode it
query_list_text_dump = ' '.join(query_list)
query_list_text = unicodedata.normalize('NFKD', query_list_text_dump).encode('ascii','ignore')
# Tokenize the text into words using NLTK library
stopwords2 = set(nltk.corpus.stopwords.words('english'))
words = nltk.tokenize.word_tokenize(query_list_text)
# Remove single-character tokens (mostly punctuation)
words = [word for word in words if len(word) > 1]
# Remove numbers
words = [word for word in words if not word.isdigit()]
# Lowercase all words (default_stopwords are lowercase too)
words = [word.lower() for word in words]
# Remove stopwords
words = [word for word in words if word not in stopwords2]
punctuations = list(string.punctuation)
punctuations.extend(("''", "//", "--","..."))
#Remove punctuations
words = [word for word in words if word not in punctuations]
#Word frequency count using NLTk module
query_frequency_dist = nltk.FreqDist(words)
# Create a dictionary to plot a graph
query_freq_df_unsorted = pd.DataFrame.from_dict(query_frequency_dist, orient='index').reset_index()
query_freq_df_unsorted = query_freq_df_unsorted.rename(columns={'index':'query_word', 0:'count'})
# Sort the dictionary of query word frequency counts
query_freq_df = query_freq_df_unsorted.sort_values(['count'], ascending=[False])
query_freq_df_top = query_freq_df.nlargest(50, 'count')
data = [Bar(x= query_freq_df_top['query_word'].tolist(), y= query_freq_df_top['count'].tolist())]
# plotly.offline.plot(data, output_type='div', filename='/word_plot.html')
plotly.offline.plot(data, auto_open=False, filename='assets/pages/word_plot.html')
#################### End of Google related script ###################################################
#################### Start of Browsing pattern related script #######################################
# Seperating only required columns from the original df
pd.options.mode.chained_assignment = None
browshistory_required_cols_df = browser_history_dataframe[['recent_visit','url_location', 'visit_count']]
browshistory_required_cols_df['recent_visit'] = pd.to_datetime(browshistory_required_cols_df['recent_visit'])
Unique_URLs_df = browshistory_required_cols_df.set_index('recent_visit').url_location.resample('H').agg({'Unique_URLs': 'unique'})
pd.options.mode.chained_assignment = None
Unique_URLs_df['Unique_URL_Count'] = Unique_URLs_df.apply(lambda row: Count_Unique_URLs(row['Unique_URLs']), axis=1)
Unique_URLs_df['datetimevalues'] = Unique_URLs_df.index
Unique_URLs_df['TimeOnly'] = Unique_URLs_df.apply(lambda row: strip_time(row['datetimevalues']), axis=1)
Unique_URLs_df['DateOnly'] = Unique_URLs_df.apply(lambda row: strip_date(row['datetimevalues']), axis=1)
heatmap_data = [
Heatmap(
x= Unique_URLs_df["DateOnly"].tolist(),
y= Unique_URLs_df["TimeOnly"].tolist(),
z= Unique_URLs_df["Unique_URL_Count"].tolist(),
colorscale='Viridis'
# colorscale=[[0, 'rgb(166,206,227)'], [0.25, 'rgb(31,120,180)'], [0.45, 'rgb(178,223,138)'], [0.65, 'rgb(51,160,44)'], [0.85, 'rgb(251,154,153)'], [1, 'rgb(227,26,28)']]
)
]
plotly.offline.plot(heatmap_data, auto_open=False, filename='assets/pages/browspattern_heatmap.html')
browspat_bar_data = [Bar(x= Unique_URLs_df.index.tolist(), y= Unique_URLs_df['Unique_URL_Count'].tolist())]
plotly.offline.plot(browspat_bar_data, auto_open=False, filename='assets/pages/wordcount_plot.html')
#################### End of Browsing pattern related script #########################################
#################### Start of NER related script ####################################################
# Extract netloc to seperate column
browser_history_dataframe['netloc']= browser_history_dataframe.apply(lambda row: netloc_extractor(row['url_location']), axis=1)
Without_SE_SM_df = remove_SE_SM(browser_history_dataframe)
clean_URL_duplicates = Without_SE_SM_df.drop_duplicates(['url_location'])
clean_null_URLS = clean_URL_duplicates[clean_URL_duplicates.url_location.notnull()]
clean_null_netloc = clean_null_URLS [clean_null_URLS .netloc.notnull()]
sorted_Without_SE_SM_df = clean_null_netloc.sort_values(['visit_count', 'frecency'], ascending=[False, False])
#Select URLs which are most visited
top_URLS_df = sorted_Without_SE_SM_df.nlargest(100, 'visit_count')
URLs_to_scrape = top_URLS_df.url_location.unique()
#Fetch text from the top visited URLS by crawling
text_from_website = grab_website_text(URLs_to_scrape)
#normalize by converting the unicode text to string
text_to_analyze = unicodedata.normalize('NFKD', text_from_website).encode('ascii','ignore')
stopword_free_text = create_stopword_free_text(text_to_analyze)
# Create a world cloud of the overall text
wc_org = WordCloud(max_words =1000, width=600, height=400).generate(stopword_free_text)
wc_org.to_file("assets/img/wc_all.png")
(Org_values, Per_values, Loc_values) = create_NER_strings(text_to_analyze)
wc_org = WordCloud(max_words =1000,width=600 , height=400).generate(Org_values)
wc_org.to_file("assets/img/wc_org.png")
wc_per = WordCloud(max_words =1000, width=600 , height=400).generate(Per_values)
wc_per.to_file("assets/img/wc_per.png")
wc_loc = WordCloud(max_words =1000, width=600 ,height=400).generate(Loc_values)
wc_loc.to_file("assets/img/wc_loc.png")
#################### END of NER related script ####################################################
cwd = os.getcwd()
file_to_open = "file:"+cwd+"/index.html"
webbrowser.open_new_tab(file_to_open)