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SUMMARY

Slide surface and contact boundary conditions can be implemented via Lagrange multipliers in the
algebraic equations in implicit structural analysis. This indefinite set of equations is difficult to solve by
iterative methods and is often too large to be solved by direct methods. When there are m constraints
and there exists a set of m variables where each variable is only involved in a single constraint, we
advocate a direct elimination technique which leaves a sparse, positive definite system to solve by
iterative methods. We prove that the amount of “fill-in” created by this process is independent of the
size of the slide surfaces. In addition, the eigenvalues of the reduced matrix do not differ significantly
from the eigenvalues of the unconstrained matrix. This method can be extended to the case where
constrained surfaces intersect and leads to a graph theoretic approach for determining which variables
can be eliminated efficiently for constraints with more general structure. Copyright c© 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of large structural deformations of materials has several applications
such as the safety of high explosives and manufacturing problems in metal forming processes.
During the heating of a high explosive, for instance, the explosive expands and deforms
its containment vessel. Depending on the strength of the vessel, the explosive can achieve
temperatures and pressures that cause it to reach a runaway state. In modeling this
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phenomenon, it is important to allow relative motion between the inside surface of the container
and the interface defined by the explosive. Thus, the explosive and its container are modeled
as two separate bodies with a slide surface boundary condition that allows the bodies to slide
tangentially relative to each other.

Slide surface boundary conditions have been implemented in many explicit and implicit
codes, e.g., [14, 5, 4]. In the implicit context, slide surface boundary conditions are implemented
as constraints. The methods used to handle these constraints vary from Lagrange multipliers,
e.g., [20], penalty methods, e.g., [14], or more recently, augmented Lagrange techniques
[23, 17, 21]. In this paper we focus on the case of persistent contact and the use of
Lagrange multipliers. The constraint equations are appended to the linear algebraic equations
resulting from a Newton-Raphson linearization. The complete set of equations, unfortunately,
is indefinite and is difficult to solve by iterative methods and is often too large to be solved by
direct methods. The structure of the constraints, however, allows a subset of the equations to
be eliminated directly, leaving a sparse, positive definite system to solve by iterative methods.
This paper discusses the conditioning and sparseness of the reduced matrix and proposes a
graph theoretic framework for determining which variables can be eliminated efficiently for
constraints with more general structure.

In structural analysis, the “transformation method” (see, e.g., [8, 11]) and its variants [9, 1]
are direct elimination methods. It seems that little attention has been given to partitioning
the constrained degrees of freedom so that these methods are efficient, leading some authors
to claim that these methods may be a “bottleneck” for large FE models [22]. Alternatively,
Lagrange multiplier methods leading to KKT-type systems may be used, especially if direct
solvers are available. If iterative solvers are used, for very large problems for example, the
options are less attractive. Projection methods [12, 13, 22], Uzawa methods, e.g., [2, 10],
and block preconditioners, e.g., [3, 16, 18, 15], may all suffer from slow convergence or high
cost when many constraints are involved. When the constraints are structured such that direct
elimination of some degrees of freedom is economical, then direct elimination as a preprocessing
step can be effective before an iterative solution of the reduced system is carried out.

Section 2 of this paper briefly discusses the modeling of slide surfaces in the case of persistent
contact. Section 3 derives an elimination technique for the Lagrange multiplier method which
is equivalent to the transformation method. In Section 4, the sparseness and conditioning of
the reduced matrix are discussed, as well as implementation options. Sample numerical results
are given in Section 5. Section 6 shows how the elimination technique may be extended to
problems with more general constraints. We close with some final remarks in Section 7.

2. SLIDE SURFACE MODELING

2.1. Slide surface constraints

A slide surface refers to the interface between two disjoint bodies that may come into contact
in a simulation. Impact and separation of these bodies must be detected, and bodies may
slide tangentially relative to each other, with or without friction. The slide surface boundary
conditions are different in each case of impact, separation, and sliding. In this paper, we will
only discuss modeling the simplest case, that of two bodies in contact that remain in contact,
which may slide relative to each other during the simulation.
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Figure 1. The normal n to the master surface and the point u∗s . The point us (not shown) is constrained
to lie on the surface orthogonal to n and through u∗s , i.e., the master surface.

A slide surface constraint in this case is an “impenetrability” constraint preventing structural
domains from overlapping. When it is known that two bodies are in contact, this constraint
can be implemented by constraining one side of the slide surface, called the slave, to the other
side, called the master. Since the master side then effectively defines the surface, it is typically
chosen to be that side that moves less, is denser, more rigid, or more densely gridded. Interface
nodes on the slave side are called “slave nodes,” and interface nodes on the master side are
called “master nodes.” The surface defined by the master nodes is called the “master surface.”

In the case of persistent contact, the impenetrability constraint for a particular slave node
constrains its displacement us to lie on the master surface. Given a displacement u∗s that lies
on the master surface near us, the impenetrability constraint states that

nT (us − u∗s) = 0 (1)

where n is the normal to the master surface at u∗s (see Figure 1).
The parametric coordinates of u∗s are found by an iterative procedure that projects the

current us along the normal n onto the closest element face on the master surface. The actual
displacement of this point u∗s is then interpolated using the finite element shape functions. For
linear hexahedral elements, the interpolation on the element face reduces to

u∗s = φ1u1 + φ2u2 + φ3u3 + φ4u4

where u1, u2, u3, and u4 are the displacements of the four nodes defining the master face, and
φ1, φ2, φ3, and φ4 are the corresponding shape function values for the parametric coordinates
of u∗s. Combining this with (1) yields

nT (us − φ1u1 − φ2u2 − φ3u3 − φ4u4) = 0.

This constraint is nonlinear; the normal vector and the shape functions depend on both
the master and the slave node displacements. We linearize this constraint by evaluating the
normal and the shape functions using the current estimates for the displacements, while us,
u1, u2, u3, and u4 represent the new displacements. We are currently experimenting with other
linearizations of this constraint which may perform better in cases of large relative sliding.
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2.2. Structure of the constraints

In matrix form, the set of constraints for all slave nodes is GT u = 0, where u is the vector of
nodal displacements. Assuming that the nodes are numbered such that all slave nodes follow
all master nodes which follow all other nodes, the matrix GT has a structure of the form 0 . . . 0 −φ11n

T
1 −φ12n

T
1 −φ13n

T
1 −φ14n

T
1 nT

1
...

... −φ22n
T
2 −φ23n

T
2 −φ24n

T
2 −φ25n

T
2 nT

2

0 . . . 0 . . . . . . . . . . . . . . . . . . . . .

 (2)

where nT
i = (nx

i , ny
i , nz

i ) is the unit normal for the ith slave node, and φij are shape function
values for the four master nodes (indexed by j) associated with the same slave node. We
abbreviate the above structure by

[
0, −NT W, NT

]
where W is a matrix containing the

positive shape function values φij . Since no node depends on any slave nodes in a slide surface
constraint, the matrix NT contains at most one nonzero in each column. The number of
constraints is equal to the number of slave nodes on the slide surface and is typically much
smaller than the total number of nodes.

3. ALGEBRAIC ELIMINATION FOR CONSTRAINED PROBLEMS

The discrete and linear constraints GT u = 0 may be incorporated into the finite element
equations Au = f via the transformation method or the Lagrange multiplier method. The
latter leads to a system that is indefinite and generally difficult to solve by iterative methods.
However, like the transformation method, solving this system can be reduced to solving a
sparse, positive definite system. The economy of this transformation depends on the constraints
having the specific structure described below.

3.1. Transformation method

In the transformation method [8, 11], the variables are partitioned into two sets, called
independent and dependent. The number of dependent variables equals the number of constraint
equations, m. Suppose such a partitioning has been made, and let u1 denote the independent
variables and u2 denote the dependent variables. The system Au = f may now be partitioned
symmetrically into block form as[

A11 A12

A21 A22

] [
u1

u2

]
=

[
f1

f2

]
while GT u = 0 can be partitioned as[

BT DT
] [

u1

u2

]
= 0.

The transformation matrix T is defined so that u = Tu1, hence

T =
[

I
−D−T BT

]
.

The transformed system to be solved is

TT ATu1 = TT f
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the solution of which may be substituted into u = Tu1 to recover the full solution. The
transformed coefficient matrix is

TT AT = A11 −A12D
−T BT −BD−1A21 + BD−1A22D

−T BT (3)

which is symmetric positive definite by construction, provided A is symmetric positive definite.
We now return to the problem of partitioning the variables into independent and dependent

sets such that (3) is economical to form. We define a purely dependent variable to be a variable
that is only involved in one constraint. If all the dependent variables u2 are purely dependent,
then D is composed of one nonzero per column and one nonzero per row (it is a reordered
diagonal matrix) and its inverse is sparse. The transformed matrix (3) would then be sparse
and economical to construct and factorize. In many problems it is possible to choose m purely
dependent variables. This is often the case in structural analysis since slave variables are often
defined so that they are purely dependent.

For the constraint matrix (2), each column of NT has at most one nonzero entry, and
since each row of NT represents a unit vector, each row contains at least one nonzero entry.
Choosing the m purely dependent variables amounts to choosing one of the components of
nT

i = (nx
i , ny

i , nz
i ) for each constraint i. Thus we can reorder and partition NT by columns into[

NT
1 , NT

2

]
such that NT

2 is a diagonal matrix.

3.2. Lagrange multiplier method

When the variables are partitioned into slave nodes, master nodes, and interior (all other)
nodes, the Lagrange multiplier method leads to an equation with the structure

Ai Aim Ais

Ami Am −WT N
Asi As N

−NT W NT 0




ui

um

us

λ

 =


fi

fm

fs

0

 (4)

where λ is the vector of Lagrange multipliers and can be interpreted as the normal force at each
slave node necessary to conserve momentum. There is no interaction in the stiffness matrix A
between the slave nodes and the master nodes.

A technique equivalent to the transformation method may be derived for matrices in this
form. As before, we partition the constrained variables into independent and dependent sets.
For our slide surface constraints, we partition GT into

[
0, −NT W, NT

1 , NT
2

]
where NT

2

corresponds to the dependent set. We can now further partition (4) as
X X X X
X X −WT N
X X X N1

X X A22 N2

−NT W NT
1 NT

2 0




ui

um

us1

us2

λ

 =


fi

fm

fs1

fs2

0

 (5)

where X represents a nonzero block in the matrix and us1 and us2 are slave variables. We will
use the following simplified notation for (5): A11 A12 B

A21 A22 D
BT DT 0

 u1

u2

λ

 =

 f1

f2

0

 . (6)
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The Schur complement of the matrix in (6) with respect to
[

A22 D
DT 0

]
is

S = A11 −
[

A12 B
] [

A22 D
DT 0

]−1 [
A21

BT

]
. (7)

Again, if there are m purely dependent variables that can be chosen for the dependent set,
then it is possible to choose D such that it is diagonal. In this case, the inverse[

A22 D
DT 0

]−1

=
[

0 D−T

D−1 −D−1A22D
−T

]
(8)

is sparse, which generally leads to a sparse Schur complement. The Schur complement is
positive definite since it is equivalent to the transformed matrix (3).

The block system (6) can be solved by solving the reduced system

Su1 = f1 −BD−1f2 (9)

and substituting u1 into

u2 = −D−T BT u1 (10)
λ = D−1(f2 −A21u1) + D−1A22D

−T BT u1. (11)

4. PROPERTIES OF THE REDUCED MATRIX

4.1. Eigenvalues of S

The convergence rate of the conjugate gradient method for solving systems with the reduced
matrix S depends on the eigenvalues of S. If A, the stiffness matrix without the constraints, is
symmetric positive definite, the next lemma bounds the eigenvalues of S away from the origin.

Lemma 4.1. Define A =
[

A11 A12

A21 A22

]
and S as in equation (7). If A is symmetric, the

smallest eigenvalue of S, λmin(S), is larger than the smallest eigenvalue of A, λmin(A).

Proof. Choose x1 6= 0 such that

xT
1 Sx1

xT
1 x1

= λmin(S)

and let x =
[

x1

x2

]
, x2 = −D−T BT x1. Then,

xT
1 Sx1

xT
1 x1

≥ xT
1 Sx1

xT
1 x1 + xT

2 x2
=

xT Ax

xT x
≥ λmin(A).

2

The behavior of the eigenvalues can be determined by applying well-known theorems in
eigenvalue sensitivity to the reduced matrix in the form (7). Consider the symmetric matrix

A =
[

A11 B̄
B̄T W

]
, with W =

[
a d
d 0

]
, a > 0, d 6= 0
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ALGEBRAIC ELIMINATION OF SLIDE SURFACE CONSTRAINTS 7

and the pairwise elimination of a single constraint and its corresponding slave equation to get
the Schur complement S. (Eliminating m constraints and their corresponding slave equations
is simply a sequence of these pairwise eliminations.)

Define E ≡ −B̄W−1B̄T so that S = A11 + E. The eigenvalues of −W−1 are

a±
√

a2 + 4d2

2d2

which shows that one eigenvalue is positive and the other is negative. From the Sylvester law
of inertia, assuming B̄ has full rank, E has one positive eigenvalue and one negative eigenvalue;
the other eigenvalues are zero.

For a matrix S, let λk(S) denote the kth largest eigenvalue and let n denote the dimension
of S. Two corollaries of the Courant-Fischer minimax theorem apply. First, the extremal
eigenvalues of A11 are bounded by the extremal eigenvalues of A (interlacing property). Second,
we have (see [24])

λr+s−1(S) ≤ λr(A11) + λs(E), r + s− 1 ≤ n

and λr−s+1(S) ≥ λr(A11) + λn−s+1(E), s ≤ r ≤ n.

In particular, if the positive eigenvalue of E is bounded, then the largest eigenvalue of S
is bounded. In addition, if E has a very large positive eigenvalue, the bound on the largest
eigenvalue of S increases by the size of this eigenvalue, but since E has many zero eigenvalues,
the other eigenvalues of S are still bounded by the eigenvalues of A11,

λr+1(S) ≤ λr(A11), 1 ≤ r ≤ n− 1
λr+1(S) ≥ λr+2(A11), 0 ≤ r ≤ n− 2.

Small eigenvalues of E can generally be avoided by choosing to eliminate a slave variable
that corresponds to large magnitude values of d, and, less importantly, small values of a.
(This assumes that the nonsquare matrix B̄ is not too poorly conditioned.) For slide surface
constraints, small magnitude values of d can easily be avoided since |d| ≥ 1/

√
3 can always be

chosen (as a component in a 3-D unit normal vector).
Instead of being concerned by the eigenvalues of E, we can guarantee that the spectrum of

S does not differ too much from the spectrum of A11 by bounding the size of the entries in
E, or more precisely, the Frobenius norm of E. This is equivalent to bounding the sum of the
squares of the eigenvalues of E and is the result of the Wielandt-Hoffmann theorem,

n∑
i=1

(λi(S)− λi(A11))
2 ≤ ‖E‖2

F .

Again, the norm of E can be roughly controlled by not choosing excessively small magnitude
values of d.

It is possible in some cases to choose variables to eliminate such that the conditioning of S
is better than the conditioning of A11. This is very difficult to do in general, however.

In conclusion, we try to control the spectrum of S by guaranteeing that it does not differ too
much from the spectrum of A11. Very small magnitudes of d can seriously harm convergence
and can easily be avoided by simply choosing larger components in nT

i = (nx
i , ny

i , nz
i ) for each

constraint row i when partitioning NT . With this strategy, we find in practice that solving
with S is only slightly more difficult than solving with A. Section 5 will show a typical example
of this.
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Figure 2. Graph of an example problem with two slide surfaces. The top side is the slave side and
the bottom side is the master side. Vertices 16 and 17 are slaves, vertices 7, 8 and 9 are masters, and

vertices 19 and 20 are constraint (Lagrange multiplier) vertices.

4.2. Sparseness of S

In this section we show that the number of nonzeros in each row of S is bounded, and is
not dependent on the number of slave variables or constraints. Thus the algebraic elimination
method can be used for very large problems. In the following, we will use the graph theoretic
representation of a sparse matrix. To analyze the sparsity pattern of S, “fill-paths” and the
graph interpretation of Gaussian elimination [19] give an over-estimate of the fill-in that occurs,
since they assume that the inverse (8) is dense. Hence, we proceed as follows.

The variables in u can be partitioned into interior, master, slave, uneliminated slave, and
constraint (Lagrange multiplier), and these sets may be represented by the symbols i, m, s, t,
and c, respectively. Uneliminated slave variables are those variables at the same grid point as
an eliminated slave variable. We then label the relevant blocks in (5) as follows:


X X X Ais

X X Amc

X X Ats Atc

Asi Ast Ass Asc

Acm Act Acs 0

 . (12)

The sparsity pattern of a matrix may be described by its graph. For a symmetric matrix
A of order n, its graph G(A) is composed of the vertices {1, . . . , n} and the edges {(i, j), i 6=
j and Aij 6= 0}. When the context is clear, we will not distinguish between vertices and
variables, and between edges and nonzeros. The graph of a matrix is often related to its
discretization grid. An example graph (for a matrix without uneliminated slave variables, i.e.,
a scalar problem) is shown in Figure 2.
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Figure 3. Graph of the reduced matrix after the slave and constraint vertices have been eliminated.
Dotted lines indicate the fill-in edges. Note that there is no fill-in edge between nodes 9 and 11 as

would be predicted by the fill-path theorem for Gaussian elimination.

For the matrix (12), the “fill-in matrix,” S −A11, after eliminating the s and c variables is
0 AisA

−1
sc Acm AisA

−1
sc Act

AmcA
−1
cs Asi −AmcA

−1
cs AssA

−1
sc Acm

AmcA
−1
cs Ast

−AmcA
−1
cs AssA

−1
sc Act

AtcA
−1
cs Asi

AtsA
−1
sc Acm

−AtcA
−1
cs AssA

−1
sc Acm

AtsA
−1
sc Act

+AtcA
−1
cs Ast

−AtcA
−1
cs AssA

−1
sc Act

 . (13)

In the graph of this matrix, we first note that there is no fill-in between any interior vertices.
The (1, 2) block AisA

−1
sc Acm and the (2, 1) block AmcA

−1
cs Asi correspond to fill-in between

an interior vertex and a master vertex when there is path between these vertices through
a slave vertex and a constraint vertex in G(A). These paths may be abbreviated (i, s, c,m)
and (m, c, s, i). The (2, 2) block −AmcA

−1
cs AssA

−1
sc Acm corresponds to fill-in between master

vertices that are connected via a path (m, c, s, s, c,m).
The fill-in caused by the other blocks can be interpreted similarly. None of these blocks

cause fill-in between vertices that are more than a small fixed number of path lengths apart.
Thus the fill-in in a row of S is bounded.

Figure 3 shows the graph of S for the problem of Figure 2. The fill-in is shown with dotted
edges. The edge (7,9) is caused by a path of the type (m, c, s, s, c,m). The fill-in generally
involves vertices on or adjacent to the slide surface.

Counting paths in the graph of (13) gives the number of fill-ins that will occur for a given
slide surface geometry.

4.3. Alternative implementations

To solve a system with S by iterative methods, it is not necessary to form S but only to apply
its action to a vector. Even if S does need to be formed, for example for use by a preconditioner,
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Figure 4. Octant of three concentric spherical shells.

this cost is low since S is sparse as shown above. Forming the Schur complement directly via
(3) is stable in the sense that the process will not break down. The size of the largest entries
in S is controlled insofar as the smallest entries in D are controlled. As mentioned, for slide
surface constraints we can choose components in D as the largest component of a unit vector
in 3-D, and these components are at least 1/

√
3 in magnitude.

Besides forming S directly, it is conceivable to adapt a direct solver to construct S in order
to save programming effort. If the matrix in (6) is symmetrically reordered such that the first
2m equations are the individual slave equations to be eliminated followed immediately by their
corresponding constraint equations (i.e., equations corresponding to slaves and constraints
are interlaced), then S is the Schur complement that remains after the first 2m variables
are eliminated via either an LU factorization or symmetric indefinite factorization with 2-by-2
blocks, both without pivoting. This ordering reduces intermediate fill-in in the LU factorization.

5. NUMERICAL TESTS

An octant of three concentric spherical shells is shown in Figure 4. The first and third shells are
composed of steel, and the second shell is composed of lucite. Slide surface boundary conditions
are used between the steel and lucite shells. This test problem has 11400 elements and 13832
nodes, with 3 displacement variables at each node. The same problem without modeling the
slide surfaces has 12844 nodes. In this example, the lucite is given an initial internal energy
of 1 kbar-cc, causing it to expand and slide relative to the steel shells. The sliding is small, so
this is a test of the method in the case of linear persistent contact.

The algebraic elimination technique was applied to the linear systems that arise and the
resulting reduced systems were solved with the preconditioned conjugate gradient method
with factorized sparse approximate inverse preconditioning [6, 7]. A zero initial guess was used,
and the residual norm was reduced by six orders of magnitude. Four processors of an IBM
SP computer were used in the computation, with interprocessor communication implemented
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ALGEBRAIC ELIMINATION OF SLIDE SURFACE CONSTRAINTS 11

with MPI. In the following table, we compare a few performance metrics between problems
with and without slide surface constraints.

Table I. Comparison between problems with and without slide surfaces.

With slide surfaces Without slide surfaces

Nonzeros in S (with slides) or A (without) 1.64 million 1.37 million
Nonzeros in preconditioner 0.95 million 0.91 million
Algebraic elimination time 0.9 seconds N/A
Preconditioner setup time 9.3 seconds 6.0 seconds
Iteration count 646 646
Total solution time 33.6 seconds 26.7 seconds

The table shows that the reduced matrix S contains only slightly more nonzeros than the
matrix A for a problem that does not model slide surfaces. The iteration counts are also similar
(in this case they happen to be the same). In addition, the time for the elimination step is
only a small fraction of the overall solution time.

6. EXTENSION TO MORE GENERAL CONSTRAINTS

6.1. Intersecting constrained surfaces

For general constraints, it is not always possible to find a partitioning of the constrained
variables into independent and dependent sets such that the dependent variables are purely
dependent. Algebraically, this means that it may be impossible to reorder the columns and
partition GT into

[
BT , DT

]
such that D is diagonal. However, the algebraic elimination

procedure can still be economical if the inverse of D is sparse, e.g., when D is a block diagonal
matrix.

A complete set of purely dependent variables cannot be found, for example, when two slide
surfaces intersect at a T. Figure 5 shows this case, which is actually treated as three slide
surfaces. Master and slave sides are chosen for each slide surface, and these are marked in the
figure. Arrows in the figure indicate that a slave node is dependent on a master node. Node 2
is a slave node for one slide surface, but is a master node for another. Also, node 5 is a slave
node for two slide surfaces. Nodes 2 and 5 are not purely dependent nodes.

For intersecting slide surfaces, however, it is possible to partition the variables such that D is
block diagonal. Consider the following procedure for selecting the dependent variables, which
corresponds to choosing columns of GT to form D. In this discussion, we will not differentiate
between variables and nodes, i.e., we consider a scalar problem.

We start by choosing all slave nodes to be in the dependent set. If a slave node is not purely
dependent, then it falls under one of these two cases:

1. the node is a slave in one constraint and a master in one or more other constraints,
2. the node is a slave node in more than one constraint.

In the first case, if a slave node is also a master in k constraints, then D will contain a block
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Figure 5. Intersecting slide surfaces.

of size (k + 1)-by-(k + 1) since the column of GT corresponding to the slave node has k + 1
nonzeros. Nothing needs to be done in this case.

In the second case, there are more constraints than slave nodes and one or more master
nodes must also be selected for the dependent set. Let s1 be a slave node that participates
in constraints c1 and c2. A master node must be chosen from the master nodes in c1 or c2 so
that D will be nonsingular. If the master node is a node that participates in k constraints,
then D will contain block of size k-by-k; master nodes with small k should be preferred. If
s1 is a slave node in more than two constraints, then two or more master nodes need to be
selected simultaneously. Here, master nodes should be selected so that the total number of
new constraints involved is minimized.

In summary, the dependent set should be composed of all the slave nodes, and selected
master nodes as described in the second case. The blocks formed in D may overlap so that the
actual blocks may be larger than the sizes mentioned. This procedure is effective, but because
of possible overlapping blocks, it is not optimal in the sense that the smallest blocks are found.

6.2. General constraints

In the case where the constraints are even more general, a block diagonal D can often still be
found. In this section, we develop a graph theoretic framework for partitioning GT so that D
is block diagonal with small blocks.

Define the binary matrix QT such that {QT }ij = 1 if and only if constraint i involves node
j (which is either a master or slave node). The matrix QT contains m rows and n columns,
where m is the number of constraints and n is the total number of slave and master nodes.
For the geometry in Figure 5, we have the matrix

QT =


1 1 . 1 . . . . . .
1 1 . . 1 . . . . .
. . . . 1 . . . 1 1
. . . . . 1 . . 1 1
. 1 . . . . 1 1 . .
. . 1 . . . 1 1 . .

 . (14)
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Figure 6. Graph of QQT .

The matrix QQT contains a nonzero at (i, j) if and only if nodes i and j are involved in the
same constraint. The graph of QQT , denoted by G(QQT ), will be helpful to understand the
partitioning problem at hand. For QT given by (14), G(QQT ) is shown in Figure 6.

A clique is a subgraph such that every vertex in the subgraph has an edge to every other
vertex in the subgraph. A maximal clique is a clique such that no vertex can be added to
the clique to form a larger clique. The graph G(QQT ) contains m maximal cliques, each
corresponding to a constraint, and the vertices of each clique correspond to the nodes involved
in the constraint. The partitioning problem is to select m nodes (or equivalently, vertices) such
that D is block diagonal with small blocks.

Fact 6.1. If an independent set of m vertices exists in G(QQT ), then QT can be partitioned
into

[
QT

1 , QT
2

]
such that QT

2 is a diagonal matrix.

An independent set of size m may not exist. Further, finding this independent set is equivalent
to the maximum independent set problem, which is NP-hard.

Fact 6.2. A vertex from each maximal clique in G(QQT ) must be selected, otherwise D will
be singular.

Fact 6.3. A connected set of k selected vertices in G(QQT ) will form a block of size exactly
k-by-k in D.

Fact 6.4. Let Cj denote the number of maximal cliques in G(QQT ) that vertex j belongs to.
Selecting this vertex for the dependent set will form a block of size at least Cj-by-Cj in D.

The partitioning problem may be solved, for example, by algorithms that try to select
vertices with small Cj . For example, m vertices with the smallest Cj may be selected to form
the dependent set. Figure 7 is a possible solution with this strategy for the graph of Figure
6. Three vertices with Cj = 1 are selected (solid circles) and three vertices with Cj = 2
are selected (gray circles). For comparison, Figure 8 shows a situation where all the vertices
corresponding to slave nodes (solid circles) are selected first, as suggested in the previous
subsection. Here, the solution is worse because D will contain a large 4-by-4 block. Selecting
vertices with small Cj is a poor algorithm for many other problems, however. We intend to
further study the partitioning problem using this graph theoretic framework in a future paper.
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Figure 7. Selected vertices in G(QQT ), forming three 2-by-2 blocks in D.
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Figure 8. Selected vertices in G(QQT ), forming two 1-by-1 blocks and one 4-by-4 block in D.

6.3. Dense rows in GT

Dense rows in GT occur when constraints involve every variable of the problem, and make the
algebraic elimination technique very costly. As an alternative, these rows may be omitted from
the elimination. Consider the partitioning of the matrix in (6) into

[
Ã B̃

B̃T 0

]

where B̃T represents dense or relatively full rows, and Ã represents the remainder of the
problem with sparse constraints. The algebraic elimination technique is only applied to Ã. If
the number of rows in B̃T is small, the reduced system based on the matrix B̃T Ã−1B̃ may
be solved iteratively. The reduced matrix is not formed, and an iterative method for indefinite
systems is required. Each iteration involves a solve with Ã which in turn involves a solve with
a positive definite matrix. If the number of rows in B̃T is very small as in many applications,
then very few iterations may be required.
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7. CONCLUDING REMARKS

We have been regularly using the algebraic elimination technique described in this paper for
symmetric problems, and have not encountered any difficulties with very poorly conditioned
reduced matrices. The extension to more general constraints in Section 6 may be very valuable,
and in future research we intend to develop and test algorithms based on these ideas.
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