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SUMMARY

Stencils are commonly used to implement efficient on-the-fly computations of linear operators arising from
partial differential equations (PDEs). At the same time the term ‘stencil’ is not fully defined and can be
interpreted differently depending on the application domain and the background of the software developers.
Common features in stencil codes are the preservation of the structure given by the discretization of the
PDE and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show
how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend
the software to enable stencil computations of more complex problems and methods such as inf-sup-stable
Stokes discretizations and mixed finite element discretizations. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Partial differential equations (PDEs) appear in many applications. In order to solve these equations
on a computer, they are first discretized by a process such as finite differences, finite volumes,
or finite elements. These discretizations often admit structure in the form of stencils and this
structure can be exploited to produce highly efficient computations. In general, stencils represent
computational patterns that repeat across the computational domain. They apply to finite differences,
finite volumes, and finite elements. The grids they are associated with have structure, but this
structure need not be limited to rectangular Cartesian domains as is most commonly done. For
example, in [3, 9, 10], stencils are defined on triangular and prismatic domains as well and they are
closely tied to an underlying finite element discretization. In hypre , stencils are defined similarly,
but they are not tied to a specific discretization. Instead, a stencil is interpreted simply as a row of
a “structured” matrix. In DUNE, the finite element stiffness matrices themselves are thought of as a
kind of stencil, since stiffness matrices also form a repeating pattern when the grid is structured.

Computations represented by simple stencil patterns have already been studied by computer
scientists through what is commonly referred to as the Jacobi iteration. In numerical analysis, the
Jacobi iteration is a simple algorithm for solving linear systems of equations and in general does not
have to have an underlying stencil representation. From a computational perspective, it primarily
involves a matrix-vector multiply and is equivalent to a Matvec operation in BLAS (see GEMV
in [4]). There have been many efforts to optimize the stencil-based Jacobi iteration, including
but not restricted to the use of array padding, loop unrolling, NUMA-aware allocation [7], and a
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combination of temporal and spatial blocking techniques [15]. In this paper, we discuss stencils in
a more general context and give more complex examples of how they appear in practice. The goal
is to provide computer scientists with information that enables new research in code optimization
techniques that will benefit applications that use stencils.

2. OPERATOR REPRESENTATIONS ON STRUCTURED GRIDS

The general workflow in the simulation of PDE-based models consists of three major steps:

1. Construct a suitable computational mesh for the given problem domain.
2. Approximate the PDE with a discretization method to produce a system of equations.
3. Solve the system of equations.

In many applications we obtain a linear system of equations, where the linear operator can be
mathematically described as a sparse matrix. Even for nonlinear problems, it is necessary to
construct linearized operators, which then again form sparse matrices. This motivates the need
for linear system solvers. To solve these systems, iterative solvers such as conjugate gradient
and GMRES are often used [17], which consist of matrix-vector multiplications and basic vector
operations. Their convergence is generally accelerated with suitable preconditioners.

Some of the most efficient preconditioners are multigrid methods. Multigrid methods [6] achieve
their efficiency through a combination of smoothing and coarse-grid correction. The smoother is
generally a simple iterative method such as Jacobi or Gauß-Seidel that is effective at reducing
high-frequency error in a small number of iterations. The remaining errors are then eliminated
on coarser grids and the resulting smaller linear systems during the coarse grid correction step.
The algorithm requires suitable restriction and prolongation (or interpolation) operators to move
between grid levels. The two-grid method proceeds by performing a few smoothing steps on the
fine system Au = f , restricting the residual r = f −Aũ, where ũ denotes an approximation to
the solution u, and then solving the coarse system Acec = Rr, where Ac is the coarse system
matrix and R the restriction operator. The solution ec is then interpolated to the fine level via a
prolongation operator P and added to the approximate solution, ũ← ũ + Pec, possibly followed
by some smoothing steps. To obtain a multigrid method, this process is applied recursively to the
coarse level. The method consists of various matrix-vector multiplications, which can also be viewed
as stencil applications. Note that interpolation and restriction operators are rectangular matrices.

In many applications, the operator of the original system exhibits a well defined structure, and this
structure can be exploited to store the linear operator more efficiently than in a general sparse matrix
format. One of these approaches is the stencil representation and another is the element-matrix
representation. The two approaches are closely related, and the latter could even be interpreted as a
kind of stencil itself when the grid is structured. In both cases similar optimization techniques can
be applied.

In the remainder of this section, we define the notion of stencils and grids and how they relate
to sparse matrices through a simple one-dimensional example. We also describe finite element
representations on structured grids and their relationship to stencils and matrices. These concepts
are explicitly used in both hypre [11] and DUNE [2, 1], but they have a long history and are useful
in a much broader context. First, we discuss sparse matrices in general.

If we consider a linear operator mapping from RN to RM , this operator can be represented as
an M ×N matrix A and the application of the operator is a simple matrix-vector product. In PDE
applications, the arising linear operators typically exhibit a sparse structure, meaning that most of
the matrix entries are zero. There is a wide range of sparse matrix formats that store only the nonzero
entries and the sparsity pattern. Perhaps the most well known format is the CRS (compressed row
storage) format, also referred to as CSR (compressed sparse row). Storing all matrix information
is definitely the most flexible approach, but not necessarily the most efficient. As we are interested
in approaches that avoid the storage of the complete matrix, we do not discuss the various sparse
matrix options in detail.
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2.1. Stencil Representation

In the general setting, we define stencils on grids, where here the term grid denotes a set of discrete
points in Rd. Assuming for the moment that we are in R2, then each point in the grid Ωg is associated
with a unique ordered pair of integers (i, j) and labeled (xi, yj). That is, we can associate the grid
with a set of indices,

G = {(i, j) : (xi, yj) ∈ Ωg}. (1)

Assuming some ordering of the grid points, we now define vectors. If u is such a vector, its sth

component is labeled ui,j , where (xi, yj) is the sth point on the grid. Note that since the set G
represents a logical uniform version of the physical grid Ωg, we use the terms “grid” and “point” in
both cases, and provide clarification when necessary.

To simplify the setting, consider the one-dimensional fine and coarse grids defined respectively
as the sets of indices G = {1, 2, . . . , 7} and Gc = {2, 4, 6} with geometric representation

· × · × · × ·
1 2 3 4 5 6 7

(2)

Vectors are related to these grids through their component indices as follows: u = (u1, . . . , u7)T

and uc = (u2, u4, u6)T . Now suppose the matrix A is given by

A =



C1 E1

W2 C2 E2

W3 C3 E3

W4 C4 E4

W5 C5 E5

W6 C6 E6

W7 C7


. (3)

Consider the matrix-vector multiply Au. The operation of row i of A on the vector u is

(Au)i = Wiui−1 + Ciui + Eiui+1. (4)

Now represent A (row-by-row) with the stencil

A ∼
[
Wi Ci Ei

]
. (5)

We see that if (5) is placed over the grid G of (2) and centered at point i, it describes the operation
in (4). That is, a stencil operation on a grid has a one-to-one correspondence with a matrix row
operation. Note that if i = 1 or i = 7, the coefficients W1, E7 and the variables u0, u8 are not
defined. Thus, to avoid listing boundary stencils separately, we assume that if a stencil coefficient
reaches outside of the grid, the coefficient is zero. Similarly, we may assume that ui = 0 for all
i /∈ G. For periodic problems, we can cause the grid in (2) to wrap around on itself by declaring
that grid point 0 is the same as grid point 7 (and similarly that grid points 8 and 1 are the same).
Hence, a nonzero stencil coefficient at the boundary wraps around to the other side of the domain.
This has the effect of adding a nonzero coefficient with value W1 in row 1, column 7 in (3) (and
similarly the nonzero E7 in row 7, column 1). It does not change how the coefficients are stored,
however. Finally, note that if any stencil coefficient is constant across the grid, e.g. Ci = 2 for all
i, the constant value only needs to be stored once, leading to significant memory savings, while the
remaining coefficients vary over the grid.

As mentioned in the previous section, stencils can also represent rectangular matrices such as
the interpolation and restriction operators in multigrid solvers [6]. For example, if we assume that



4 C. ENGWER, R. D. FALGOUT, U. M. YANG

Ci = 1, the interpolation operator that is generally used with A in (3) is given by the matrix

P =



−E1

1
−W3 −E3

1
−W5 −E5

1
−W7


. (6)

We see that (6) has two different types of row operations: one for even numbered rows and one for
odd numbered rows. More precisely, row operations for (6) are defined by

(Pu)i =

{
−Wiui−1 − Eiui+1 i ∈ G \ Gc,
ui i ∈ Gc.

(7)

Denoting the sets G \ Gc and Gc by the letters f and c respectively, then (6) can be represented by
the stencil

P ∼
[
−Wi 1 −Ei

]
c

=
[
−Wi · −Ei

]f
c
⊕
[
· 1 ·

]c
c
, (8)

where ⊕ denotes direct sum (the range spaces of the two stencils are orthogonal subspaces of the
range space of P ). If i ∈ G \ Gc, we obtain the result (Pu)i by applying the stencil with superscript
f to G centered at point i. Likewise, if i ∈ Gc, we obtain the result (Pu)i by applying the stencil with
superscript c to G centered at i. Equation (8) only operates on the vector components {u2, u4, u6}.
Note that (6) can also be expressed using a “column” stencil. Stencils of this type have traditionally
been represented in the multigrid literature with the outward bracket notation given by

P ∼
]
−Ei−1 1 −Wi+1

[
. (9)

In general, a stencil representation of a matrix for a one dimensional problem is defined as
follows: [

· · · X−1
i X0

i X+1
i · · ·

]ran
dom , (10)

where dom indicates the domain grid to which (10) is applied, ran signifies the range of (10), and
the domain and range are related through a common index space of integer values. A stencil-based
representation of a matrix can now be written as

A =
∑
p∈Gran

qp s
T
pQ

T
p ,

where sp is a local vector of stencil coefficients for point p (recall that these coefficients also
correspond to nonzeros in some row of the matrix), and qp and Qp are mappings from the local
numbering to the respective row number and column numbers of the global matrix. To be more
specific, assume that Gran is a range grid with n grid points, and p is the m-th point in the grid. Also
assume that the matrix is square for simplicity. Define qp ∈ Rn as the vector whose m-th coefficient
is 1 and all other coefficients are 0, and sp ∈ Rk as the vector of coefficients for the k-point stencil.
The n× k matrix Qp maps the local stencil for p to its global column numbers, i.e., if the i-th
coefficent in sp points to the j-th point in the grid, the j-th coefficient in the i-th column of Qp is
1 while all of its other coefficients are zero. With this representation, we can rewrite matrix-vector
multiplication in terms of local operations on local vectors up ∈ Rk as follows:

Au =
∑
p∈Gran

qp(s
T
p (QTp u)) =

∑
p∈Gran

qp(s
T
p up).
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2.2. Element-Matrix Representation

The element-matrix representation is the usual approach in finite element codes to assemble the
global matrix, but it can just as well be used to avoid a global assembly completely. Following the
1D example above, consider the element matrix

Aα =
1

2

(
Cα Eα
Wα+1 Cα+1

)
, (11)

defined on the element [xα, xα+1] where α ∈ T (Ω) = {1, 2, . . . , 6}. The matrix A in (3), as well as
finite element matrices in general, can then be decomposed into local matrix contributions Aα:

A =
∑

α∈T (Ω)

QαAαQ
T
α ,

where T denotes the computational mesh, α is an element in this mesh, and Qα maps from element
local numbering to global numbering. These are local matrices describing the contributions on
a single element α. If we consider a vertex-based discretization (i.e., Q1 ansatz functions) on a
quadrilateral mesh, this means that the matrix Aα is a 4× 4 matrix.

This representation allows us to rewrite matrix-vector products in terms of local contributions

Au =
∑

α∈T (Ω)

Qα(Aα(QTαu)) =
∑

α∈T (Ω)

Qα(Aαuα)

and thus enables a flexible on-the-fly representation of the linear operator. Note: the actual
performance of this approach strongly depends on the mesh data structures and the amount of work
on each element. As illustrated in [13], using an element-matrix representation for higher order
methods can achieve close-to-peak Flop performance.

For multigrid solvers, the necessary prolongation and restriction operators can easily be
represented using element matrices. In this case the global matrix is a rectangular matrix. The local
matrices are however (generally) still square matrices, since the local contributions on a single mesh
element represent the coupling of the shape-functions on the fine mesh with the shape-functions on
the coarse mesh; in both spaces the number of basis-functions with local support is the same, 4 for
Q1-FEM on a quadrilateral mesh.

The application of the prolongation to a coarse mesh vector can be formulated as

Pu =
∑

α∈T c(Ω)

∑
α′∈C(α)

Qα′(Pα
′

α (QTαu))

where C(α) denotes the set of child-elements of α and Pαα′ is the local prolongation operator
mapping from the coarse element α to the fine element α′.

2.3. Performance Optimization for Stencil-based Codes

The so-called Jacobi iteration mentioned in the introduction is a simple stencil-based computation
that has been studied extensively in the context of performance optimization. The iteration studied
in the literature is not always strictly equivalent to the Jacobi method used to solve linear systems,
but it exhibits the primary computational pattern of importance (so it is Jacobi-like). From a
mathematical point of view, one iteration of Jacobi for solving the linear system Cu = f is given
by uk = uk−1 +D−1(f − Cuk−1), where D is the diagonal matrix containing the diagonal of
C, and uk is the k-th iterate to approximate the solution u. If we let A = I −D−1C, then
uk = Auk−1 +D−1f , and it is easy to see that the main computational component of the Jacobi
method is simply a matrix-vector multiply, which can be written as in Algorithm 1.

Algorithm 1 Jacobi: matrix-multiply form

for k = 1 to K do
uk = Auk−1

end for
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Figure 1. Jacobi algorithm with 3-point stencil in 1D (top) and temporal blocking optimization using
diamond tiling (bottom). The data dependency between time levels (iterations) is shown with red arrows.
Diamond-shaped tiles with the same number are independent of each other and can be computed in parallel.

Tile sizes are chosen based on various hardware characteristics such as cache size.

Using the example of the 1D spatial grid and 3-point stencil in equations (3)–(5), it is easy to see
that the algorithm can be written as a stencil application in Algorithm 2.

Algorithm 2 Jacobi: 3-point stencil in 1D

for k = 1 to K do
for i = 1 to N do
uki = Wi · uk−1

i−1 + Ci · uk−1
i + Ei · uk−1

i+1

end for
end for

In the algorithm, space is referenced by index i and time (or iteration) by index k. The values Wi,
Ci, and Ei are coefficients that may or may not vary spatially. For example, Ci may be constant as
in the stencil (8).

In general, the matrix-vector multiply in Algorithm 1 need not involve a stencil operation at all,
as in the case of unstructured-grid codes. In this paper, we are primarily interested in cases where
either all or part of the multiply can be represented as a stencil operation. In particular, we give
examples of higher-dimensional stencils in Section 3 for a variety of applications, and in Section 4
we discuss the use of stencils in the software libraries hypre and DUNE.

In the context of performance optimization, the Jacobi algorithm in 2 is the most commonly
studied form of the iteration, though it has also been studied extensively for the 5-point stencil
in 2D and the 7-point stencil in 3D. For simplicity, we focus here on the 1D case. A graphical
illustration of Algorithm 2 is shown in Figure 1 (top). Many optimization techniques have been
developed for this algorithm, too many to be listed here. However we will mention a few. One of
the earliest approaches is the wavefront technique introduced in [14]. A variety of optimization
techniques, such as array padding, multilevel blocking, loop unrolling and reordering, and more are
considered for the 7-point stencil in [7]. Another more recent temporal blocking approach is the
diamond tiling technique depicted in Figure 1 (bottom) and described in some detail in [15]. The
latter paper also discusses the 3D spatial setting.

One advantage of the Jacobi example above is that it is easy to understand and also provides
many optimization opportunities. In practice, however, Jacobi is often not the best solver, especially
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Figure 2. Multigrid algorithm in 1D. Data dependencies within grid levels are shown with red arrows (square
matrix operations) and data dependencies between grid levels are shown with blue arrows (rectangular
restriction-matrix operations). This represents only the first half of the so-called multigrid V-cycle. The

second half of the cycle is the inverse of this diagram; it starts at the top and proceeds down.

for large-scale PDE simulations. One of the fastest solvers in these settings is multigrid [6]. As in
Algorithm 1, multigrid can also be described as a sequence of matrix-vector multiplies. However,
the multiplies involve both square and rectangular matrices. In the simple 1D setting, this leads to
the picture shown in Figure 2. Because of the wide data dependency graph, temporal blocking is
more difficult. Note that it is easy to increase the number of square matrix-vector operations on each
grid level to increase optimization opportunities [8], but if this does not lead to a sufficient decrease
in iterations, the extra computations generally produce little gain in overall solver speed.

3. EXAMPLES OF STENCIL REPRESENTATIONS

In this section, we consider three examples to illustrate more complex stencil situations. We begin
with a simple 2D Laplace example, then discuss a Stokes problem and a more involved discretization
of diffusion problems. The examples are all presented on grids (meshes) that contain large Cartesian
components consisting of rectangular cells with data located around the cells at mesh entities such
as cell centers, vertices (nodes), faces, and edges (in 3D). See Figure 3 for a 2D illustration.

3.1. 2D Laplace stencil

In the first example, we consider the Laplace equation in 2D, a standard test problem for elliptic
PDEs. For a given domain Ω with boundary Γ = ΓD ∪ ΓN ∪ ΓR and a given source function f , we
want to find u that satisfies the following equations:

−∆u = f on Ω (12a)
u = g on ΓD (12b)

∂nu = j on ΓN (12c)
u+ α∂nu = k on ΓR . (12d)

We can distinguish between three basic types of boundary conditions, each leading to a distinct
stencil on the boundary: Dirichlet conditions on ΓD impose a fixed value on the boundary; Neumann
conditions on ΓN impose a given flux through the boundary; and Robin conditions on ΓR are a
mixture of both. We present two stencils produced by two common discretization choices. Note that
we omit scaling factors, since focus here is the stencil shape. Scaling factors can be included in the
right hand side or can vary depending on the discretization scheme used to generate the stencil.

For a first order finite element discretization on a structured quadrilateral mesh, we obtain the
well known 9-point stencil, −1 −1 −1

−1 8 −1
−1 −1 −1

 . (13)
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(i,j)

Figure 3. Cell-centered, x-face, y-face and nodal data points on a cell.

This example relates neighboring vertices. Another common discretization is the cell-centered finite
volume approach. Here the unknowns are associated with cells and connected via faces to produce
the classical 5-point stencil,  −1

−1 4 −1
−1

 . (14)

Note that this stencil can also be generated using a finite difference discretization on a node-centered
grid or finite elements on a square triangulated mesh.

These two examples demonstrate the need for code that can manage different types of grid
entities, but this is actually easy to accomplish here. Because each stencil involves either vertices
or cells (not both), we can produce a dual mesh by shifting the original cell mesh. On the dual
mesh, the cells become vertices, so the two entity types can be treated as if they were the same. This
approach is not sufficient in general, however. Depending on the exact type of discretization (e.g.,
higher-order finite element methods) and the type of model, unknowns can also be associated with
faces or edges (in 3D) or a mixture of these entities. The next two sections provide examples.

3.2. 2D Stokes problem

A well-known problem is the Stokes problem. It is important in many engineering applications, yet
it is one of the simplest models that employs a mixture of grid entity types. The physical problem is
given by the following equation and an additional constraint, which ensures incompressibility:

−ν∆~v +∇p = ~f (15a)
∇ · ~v = 0 (15b)

Here we have to discretize three physical quantities, the two velocity components vx, vy and the
pressure p. A wide range of mathematical formulations for these equations are available and the
actual choice depends on the particular problem being solved.

In the context of this paper, one issue for the Stokes problem is that we are not totally free to
adapt the data layout to best fit the hardware. On one hand the data layout, i.e. the numbering of
unknowns, has an immediate impact on the memory access pattern and on the overall performance
of the algorithm. On the other hand, the discretization has to satisfy certain properties to ensure
existence and uniqueness of the solution, namely, it must satisfy the discrete inf-sup condition
known as the LBB condition [5]. A consequence of this property is that the discretization must
have fewer degrees of freedom for the pressure unknown than for either of the velocity components
and thus the memory layout for pressure and velocity must differ.

A common choice for the finite element discretization is the Taylor-Hood element [18], which
assumes piecewise (bi-)quadratic functions for the velocity components and piecewise (bi-)linears
for the pressure. The degrees of freedom for this formulation are oriented as in Figure 4, i.e., two
velocity unknowns vx, vy at each vertex, face, and cell, and one pressure unknown p at each vertex.
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velocity

pressure

Figure 4. Layout of unknowns for the Taylor-Hood Stokes finite element on triangles and quadrilaterals.
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Figure 5. Example of a mapping from entity numbering (left) to a global numbering of the degrees of
freedom (center, right). This particular numbering of velocity and pressure unknowns (vx, vy, p) is currently

implemented in DUNE.

The associated linear system takes the form(
A B
−BT 0

)(
v
p

)
=

(
f
0

)
, (16)

where A is a quadratic matrix representing a vector-valued Laplace operator, and B is a rectangular
matrix representing a discrete gradient operator.

An efficient approach for solving the linear system is the so called Schur-complement approach.
Here the equations are rewritten so that the pressure satisfies the system

Sp = BTA−1f , (17)

where S = BTA−1B is called the Schur complement. The matrix S is never computed explicitly, as
it is dense. Instead, S is applied by calling the individual operators. Note that applying A−1 means
we have to solve a linear system. Since A, B, and BT can be represented by stencils, it is possible
to employ fast stencil-based techniques to achieve a high algorithmic intensity, even for this more
challenging problem. Remark: A similar data layout is obtained when considering a finite difference
discretization on a staggered grid.

To globally store the data, a common approach is to block the velocity components per entity.
Two numberings are employed: first all entities are numbered from 0 to Nv − 1, then the vertices
are numbered lexicographically from 0 to Np − 1. The total number of unknowns is 2Nv +Np. The
velocity components (vx, vy) at a particular entity i ∈ [0, Nv) are stored at positions 2i and 2i+ 1,
and the pressure at vertex j ∈ [0, Np) is stored at position 2Nv + j. In DUNE, both numberings
are constructed from numberings per entity type as described in Section 4.1.3 and the resulting
numbering for the 2D Stokes problem is depicted in Figure 5.

Implementing this discretization in terms of stencils requires nine different stencils as illustrated
in Figure 6: four to compute the velocity-velocity operatorA; four for the velocity-pressure operator
−BT ; and one for the pressure-velocity operator B. In reality, only the five stencils for A and B are
needed, since the operation of −BT can be implemented in terms of B.

3.3. 2D Local Support-Operator Diffusion Scheme

A cell-centered discretization scheme for arbitrary quadrilateral meshes is introduced in [16] for the
diffusion problem

∂u

∂t
−∇ ·D∇u = f (18)
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Figure 6. Stencils for the Stokes problem. Center points (enclosed in squares) are connected to all other
points (the connections are omitted). The velocity points (black dots) represent two velocity components vx
and vy . The stencils (ordered left to right and top to bottom) have 51, 50, 30, 30, 18, 10, 7, 7, and 5 points.

Figure 7. A block-structured grid with cell-centered and face-centered variables (left) and the stencils
generated by the local support-operator diffusion scheme (right). The stencil for the u equations is centered

at cells and the two stencils for the F equations are centered at faces.

on a logically Cartesian 2D grid. The scheme introduces the flux variable F = −D∇u, and
associates variable u with cell centers and F with cell faces as shown in Figure 7. The discrete
equations can be described via three stencils, also depicted in the figure. Note that this finite
difference formulation is equivalent to a mixed finite element formulation and to mimetic finite
differences.

One way to implement this scheme is to block the unknowns by entity type. Assigning numbers
to the types cell (1), x-face (2), and y-face (3), this approach leads to the block 3× 3 matrix

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (19)

Each submatrix Aij contains stencil coefficients that couple unknown type i to j, and each can
be described in terms of (sub)grids and (sub)stencils. For i = j the submatrix is square, A11 is a
diagonal matrix, and A22 and A33 have 3 nonzeros per row. For i 6= j the matrices are rectangular
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with 2 to 4 nonzeros per row. Since A is a sparse matrix, the scheme is called “local”, whereas the
traditional support-operator method yields dense matrices.

Note that this discretization scheme is of second-order accuracy even on non-smooth meshes.
It also translates naturally to block-structured grids as in Figure 7. In particular, it extends
straightforwardly across the five structured grids in the figure, even around the corner point in the
intersection of the grids. Grids of this type can be handled by the semi-structured interface in hypre ,
which is discussed in Section 4.2.2.

4. IMPLEMENTATION DETAILS OF OPERATOR CONCEPTS

In this section we compare the implementation concepts of DUNE and hypre . The DUNE library
focuses on generality and aims mainly at solving PDEs on unstructured meshes, while hypre is
mainly concerned with linear algebra and linear solvers. Traditionally DUNE uses classical matrix
formats, like CSR, or the more recently adopted SELL-C-σ format [12], an efficient sparse matrix
format for CPUs and accelerators. All of these formats have in common that they explicitly store
only non-zero entries. The hypre library offers a rich choice of optimized matrix formats for semi-
structured data, where stencil-like representations are applicable and the memory footprint can be
reduced dramatically. While the DUNE approach is more flexible, it is also more expensive.

4.1. Implementation in DUNE

DUNE allows for a range of different numerical methods, but in the following we describe the
usual approach as it is used in the DUNE/PDELab finite element package. A core feature of DUNE
is the grid interface [2, 1], which allows one to describe a very general class of meshes and
provide specialized implementations under a common interface. For example, DUNE can describe
unstructured, locally refined, simplicial grids, as well as structured hexahedral grids. The latter class
of grids is the typical structure that is considered in stencil codes.

In order to support a broad class of meshes, DUNE/PDELab uses an element-based representation
of the operator. This follows the element matrix representation described in Section 2. With this
representation, it is possible to either assemble the global matrix A or immediately apply the
operator without a full assembly. In the latter case the element matrices are usually computed on-the-
fly and have to be recomputed for every cell. Depending on the a-priori information, the developer
can avoid certain re-computations, e.g. evaluation of all shape-functions at all quadrature points, but
such optimisations can not be performed automatically by the framework. Symmetry and regularity
of the grid can, to some extent, be exploited via the DUNE Grid Interface, as will be discussed next.

4.1.1. The DUNE Grid Interface allows modeling of structured and unstructured grids in a unified
fashion. Using generic C++ programming techniques, DUNE provides a general interface to all of
these implementations. Similarly to the idea of STL algorithms, it is possible to write algorithms
based on these interfaces without knowing the actual implementation. For DUNE, a wide range of
grid implementations exist, ranging from simple structured grids to parallel and locally adaptive
grids, to special purpose implementations like surface meshes of network grids (see Figure 8).

In DUNE/PDELab such algorithms are provided to implement finite element discretizations on
arbitrary DUNE grids. In order to implement the element matrix formulation, the first abstraction
needed is a loop over all grid elements. Using the iterator concept, all cells are ordered linearly
and an iterator allows one to loop through the elements in this linear (implementation dependent)
ordering. Now on each element the local matrix AE has to be computed and must be mapped back
to the global numbering. The mapping from local to global numbering uses two main features of
the DUNE interfaces. For each basis function with element local support, we can associate a local
degree of freedom and thus a row in the matrix AE . These local basis functions are associated with
subentities of the cell, e.g., the fourth vertex of the cell or the second face of the cell. Together with
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Figure 8. Examples for possible grids covered by the DUNE grid interface specification: tensor structured
grids (left), fully unstructured and locally adaptive grids (middle), embedded surface grid (right) §.

a (per process) global consecutive numbering of all entities, it is possible to construct a consecutive
global index for all degrees of freedom and to compute the global index for a given local unknown.

4.1.2. Structured Grids are one possible implementation of the general DUNE grid interface.
The structured grid implementation in DUNE (called YaspGrid) offers tensor-product grids, i.e.,
non-equidistant structured grids in arbitrary space dimensions. On one hand, the grid provides
topological information that can be used to compute the indices, while on the other hand, it provides
geometric information that is necessary to implement a general finite element formulation. Due to
the well defined structure of the grid, it is possible to simplify many of the geometry computations.
If the grid is equidistant, all cells are only translations of the first cell and thus most of the geometric
information does not change throughout the grid.

While it is possible to avoid recomputing this information, it is difficult to further use the fact
that the information does not change. In the extreme case, the local matrices AE would not change
throughout the grid, but in the current interfaces, it is not possible to carry this information to the
higher level components of DUNE/PDELab. However, this is only a minor issue, because the case
where AE is actually constant for all cells is an academic extreme, and for nearly all applications
some kind of locally varying information enters the model. This information might be some non-
linearity like in the Navier-Stokes equations, local parameters like in porous media applications, or
locally varying geometric information like in tensor-product meshes.

4.1.3. Local-Global Index mapping is constructed using a set of consecutive indices for each type
of entity in the mesh. Consider the case of the finite element Taylor-Hood discretization. For Q2

shape functions we have one unknown per vertex, face, edge and cell, and for Q1 we only have
an unknown at each vertex. For the velocity we have three Q2 spaces, as we have vector-valued
data. As suggested in Section 3.2, the storage layout can simply be computed from these indices by
grouping unknowns per entity type. The resulting solution vector u would be given as

u = [vv,ve,vf ,vc,p] with vτ = [(v0
x, v

0
y, z

0
z), (v1

x, v
1
y, z

1
z), . . .] ,

p = [p0, p1, . . . ] ,

where the superscript τ ∈ {v, e, f, c} denotes the entity type (vertex, edge, face, cell). This index
mapping approach enables the generation of a wide range of different storage patterns for all kinds
of models. The flexibility also allows to some extent the ability to increase cache reuse.

4.1.4. On-the-fly operators are supported in DUNE to avoid storing the full sparse matrix. Linear
solvers such as the conjugate gradient method can be written in this way, because they work

§Picture from http://www.dune-project.org/modules/dune-foamgrid/

http://www.dune-project.org/modules/dune-foamgrid/
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Index Space

Figure 9. A grid consisting of two boxes in hypre’s structured interface.

purely on an operator-based interface, that is, they only require the operation Au, but not the
individual entries of the matrix. Such an operator interface can be implemented completely on the
fly, using the element-matrix representation, discussed in Section 2.2. The same holds true for simple
preconditioners like the Jacobi preconditioner or for geometric multigrid, where the prolongation
and restriction operators can also be represented as the sum over local matrices (see 2.2). Depending
on the discretization it might require additional local information, like the vertex-cell relation, or the
knowledge of the diagonal elements, which can be pre-computed and stored cheaply. In these cases,
the DUNE/PDELab assembler performs a grid loop and immediately evaluates the application of
the operator and not the matrix entries. This is similar to what is done in classic stencil codes, but
instead of a classical stencil, it relies on the concept of element contributions. The advantage of this
approach is that it also works for unstructured grids and advanced numerical schemes, but it comes
at the price of an increase in overhead. This overhead has basically two sources: 1) the grid loop can
be relatively expensive, in particular in the case of fully unstructured grids; 2) in the general case
the local matrix operator cannot make use of a-priori knowledge, like constant coefficients, or affine
geometries, and thus the entries must be reevaluated in each cell. The amount of overhead depends
strongly on the particular scheme and on assumptions put into the implementation. Higher-order
methods reduce the overhead, by increasing the arithmetic intensity.

4.2. Implementation in hypre

The hypre library offers a set of optimized matrix formats, which try to avoid storing repetitive
information. For example, on structured meshes the matrix pattern does not need to be stored, and
for operators that are generated from constant stencils such as the 9-point stencil (13) or the 5-
point stencil (14) the row entries are known a priori. Therefore hypre offers several interfaces: a
structured, a semi-structured, a finite element, and a linear-algebraic interface. Since the focus of
this paper is stencils, we only consider the structured and semi-structured interfaces, which are based
on stencils. In this section we describe the implementation of matrices and vectors in the structured
and semi-structured interfaces and some planned extensions to them.

4.2.1. The Structured Interface is based on grids and stencils. The grids in the structured interface
are defined on an index space. The index space consists of a collection of d-tuples for a space of
dimension d, e.g., doubles (i, j) in 2D. The StructGrid is a collection of non-overlapping boxes
defined on the index space. A box is a collection of cell-centered indices defined by its lower corner,
i.e., the d-tuple with the smallest values, and its upper corner, i.e., the d-tuple with the largest values.
Figure 9 illustrates a grid.

A StructStencil is a collection of indices, representing a relative offset from some point in the
grid. For example a standard 2D 5-point stencil would be represented as (0, 1)

(−1, 0) (0, 0) (1, 0)
(0,−1)

 .

The matrix in the structured interface, the StructMatrix, is defined by a grid and a stencil. The
data structure of the StructMatrix contains information on the grid and the stencil in addition to the
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Figure 10. A box with ghost layer connected to two boxes in hypre’s structured interface.

data, which is an array of doubles defining the coupling coefficients of the matrix. The data structure
of the corresponding vector, the StructVector, is similar except it does not have a stencil.

For both the vector and the matrix, all values of the data array associated with a given box of
the grid are stored contiguously. In the case of the matrix where the data contains the values for
different stencil entries, the data for a particular stencil entry are also stored contiguously. From a
matrix point of view, this is equivalent to storing the diagonals (or a part of a diagonal if the grid
consists of more than one box) of a matrix contiguously. For both a vector and a matrix, the boxes
for the data array may be larger than the actual grid boxes. This allows the data to have ghost cells
for better efficiency and to avoid the need for special stencils at the box boundaries. Some of these
ghost cells can overlap with other grid boxes on the same processor or a neighboring processor.
Updates in the ghost cells therefore require either copying data from other boxes or communicating
the data from a different processor. We do not discuss the parallel aspects further, since this is not
the focus of the paper. Figure 10 shows a box with its ghost layer connected to two other boxes.

Note that for certain problems and/or computer architectures it might make sense to change the
data storage. For example, interleaving stencil entries could possibly improve cache use for certain
problems. We do not investigate this further here since this goes beyond the scope of the paper.

In the current hypre implementation, the StructMatrix has only one grid, which is used both
as range and domain, forcing the matrix to be square. However, work is in progress to redefine
the StructMatrix data structure to allow for different domain and range grids, and hence allow for
rectangular matrices as well. Rectangular matrices are important operators for multigrid solvers,
which require restriction and interpolation operators to move between increasingly coarser grids. In
the context of multigrid, an interpolation operator has a domain grid that is generally a coarsened
version of the range grid, and vice versa for a restriction operator. To support this, the new
StructMatrix data structure also contains strides, i.e., d-tuples that define the coarsening factor for
each dimension. For example, a stride of (2, 1) on a two-dimensional grid of size n× n would
generate a grid of size n/2× n. There is another important type of rectangular matrix that occurs in
the context of the semi-structured interface and it is covered in Section 4.2.2.

4.2.2. The Semi-Structured Interface allows the use of more complex grids, including block
structured grids (illustrated in Figure 7), overset grids, and adaptive mesh refinement grids (as
shown in Figure 11). These grids are generated by gluing together various structured parts using
a graph and suitable stencils at the interfaces. While the structured interface only considered the
cell-centered variable type, here it is possible to define additional variable types such as nodal, edge
centered, and face centered. Figure 3 illustrates cell centered (circles), nodal (squares), x-face and
y-face centered (triangles) variables. The index (i, j) is used to reference the variables in black. The
grey variables are referenced by other indices. Figure 7 illustrates several stencils between different
variable types and Figure 12 illustrates how they are represented in hypre .

The semi-structured grid is composed of a number of structured grid parts each with their own
index spaces. Each part consists of boxes and variables. The unknowns in the linear system are
characterized by their part number, their variable type, and an index that identifies the cell on the
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Figure 11. An adaptive mesh refinement grid in hypre’s semi-structured interface.
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Figure 12. Assignments of labels and geometries to the y-face stencils in Figure 7.

part. The non-zero pattern of the semi-structured matrix, the SStructMatrix, is described through a
graph, which consists of two types of couplings: stencil and non-stencil. The stencil couplings are
described by stencils similar to the structured interface. The non-stencil couplings define specific
couplings between particular unknowns, e.g., couplings between different parts, but also couplings
within a part that only belong to specific cells and do not belong to the stencil. The SStructMatrix
can then be defined as a sum of a structured matrix part S and an unstructured part U :

A = S + U. (20)

The U matrix is completely unstructured and stored as a ParCSRMatrix, which is a parallel sparse
matrix format based on the well known serial CSR format. The S matrix consists of a collection of
StructMatrices. Currently, only stencil couplings between the same variable types are stored in S,
whereas couplings between different variable types are included in U . Hence, for an example case
of a single part with three different variable types, the SStructMatrix currently has the form S11 U12 U13

U21 S22 U23

U31 U32 S33

 . (21)

Even though the Uij blocks are actually structured matrices, they cannot be expressed in terms
of StructMatrices, since they are rectangular and the structured interface currently only allows
square structured matrices, as mentioned in Section 4.2.1. The SStructVector also consists of an
unstructured and a structured part, but is of course less complex.

To get a better understanding of the structure of Uij one needs to take a look at the grids one
obtains for different variable types in the same part and how they relate to a cell-centered grid.
Figure 13 shows a box consisting of 3× 3 cells with cell-centered, nodal, x-face and y-face centered
variables. Since the structured grid is based on cell-centered variables and since we would like to
use already existing functionality, a box for a new variable type is converted to a cell-centered box,
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Figure 13. Converting a box (top) to cell-centered type boxes for nodal (bottom left), y-face (bottom center)
and x-face (bottom right) variables.

Figure 14. Converting a cell-centered grid with two boxes to a “nodal” cell-centered grid.

leading to a larger box as illustrated in the lower half of Figure 13. The grey shaded part shows how
the original cell-centered box relates to the new box.

While this conversion is fairly simple for one box, it becomes more complicated for a collection
of boxes. Figure 14 shows the conversion from a more complex cell-centered grid with two boxes to
a nodal grid. Using the approach demonstrated for one box and applying it to the individual boxes
leads to two overlapping boxes as illustrated in the center of Figure 14. Since overlapping boxes are
not allowed, the grid needs to be redefined to a grid without overlap. Employing the approach used
in hypre to deal with this situation leads to a grid with three boxes as depicted on the right of Figure
14. Generally it is necessary to redefine grids in this way when building matrices Sii that correspond
to non-cell centered variable types.

Future plans for hypre include replacing the matrices Uij by structured matrices Sij . As already
mentioned in Section 4.2.1 this requires both a range and a domain grid. If we consider the grid
with two boxes in Figure 14 and assume that i is cell-centered and j nodal, the range grid would
be the left grid in Figure 14 and the domain grid the right grid. If one overlays the nodal grid with
the cell-centered grid (boxes with thick black dashed lines) as illustrated in Figure 15, it becomes
clear that these boxes do not line up with each other. This makes it very difficult to define matrix
operations so they can be implemented in an efficient way. To avoid this difficulty boxes for both
grids need to correspond to each other. While it is possible to deal with a box of one variable type
that is embedded in a corresponding box of another variable type, a box is not allowed to overlap
several boxes as is the case for the left cell-centered box in Figure 15. To avoid this issue, it would
be necessary to generate a new set of boxes that fulfills these conditions, which here would lead
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Figure 15. Demonstrating the difficulty to convert a more complex grid to a different variable type and
matching up boxes.

Figure 16. Finer grid with various variable types.

to eight boxes from the original two (see Figure 14). This approach becomes increasingly more
complicated for grids with more boxes and variable types.

A better way to deal with this situation is to convert the original grid into a “cell-centered” grid
of about double the size in each direction that contains all variable types as illustrated in Figure
16, and then access the individual variable types using strides. In that situation, one could use the
current strategy to eliminate overlapping boxes and would get significantly fewer boxes overall. In
the example with two boxes, this would produce only three boxes for all four variable types as in
Figure 16, compared to eight boxes for two variable types in the previous approach. Implementing
this approach in hypre is an area of future work.

5. CONCLUSIONS

In the context of performance optimization for stencil-based computations, the so-called Jacobi
iteration has been studied extensively and helped to produce many useful optimization techniques.
In contrast, scientific simulation codes generally involve more complex computational patterns,
yet in many cases these patterns still exhibit structure that can potentially be exploited. In this
paper, we discuss the use of stencils in more general settings and give examples of how they are
used in PDE applications. In particular, we describe the relationship between stencils, matrices,
solvers, and discretizations of PDEs. We also discuss data layout approaches for these problems
and give examples of how stencil-based problems are managed in hypre and DUNE. The goal is to
help create a bridge between the computer science and computational mathematics communities by
providing information that enables new research in code optimization techniques that will benefit
PDE applications that use stencils.
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