
High-Performance Algebraic Multigrid Solver Optimized for
Multi-Core Based Distributed Parallel Systems

Jongsoo Park1, Mikhail Smelyanskiy1, Ulrike Meier Yang2, Dheevatsa Mudigere1, and Pradeep Dubey1

1Parallel Computing Lab, Intel Corporation
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

ABSTRACT
Algebraic Multigrid (AMG) is a linear solver, well known for its
linear computational complexity and excellent parallelization scal-
ability. In addition its use also leads to a significantly reduced
amount of global reductions, compared to Krylov-based solvers,
even when used as a preconditioner to Krylov methods. As a re-
sult, AMG is expected to be a solver of choice for emerging ex-
treme scale systems capable of delivering hundred Pflops and be-
yond. Taking advantage of a large amount of node level concur-
rency requires significant optimizations of underlying algorithms:
from optimizing cache locality and reducing branching overhead,
to extracting thread/SIMD parallelism. While node level perfor-
mance of AMG is generally limited by memory bandwidth, achiev-
ing high bandwidth efficiency is challenging due to highly sparse
irregular computation, such as triple sparse matrix products, sparse-
matrix dense-vector multiplications, independent set coarsening al-
gorithms, and smoo-thers such as Gauss-Seidel. We develop and
analyze a highly optimized AMG implementation, based on the well-
known HYPRE library. Compared to the HYPRE baseline imple-
mentation, our optimized implementation achieves 2.0× speedup
on a recent Intel Haswell Xeon processor. Combined with our other
multi-node optimizations, this translates into up to 3.7× speedups
when weak-scaled to a 64-node system. In addition, our imple-
mentation achieves 1.3× speedup compared to AmgX, NVIDIA’s
high-performance implementation of AMG, running on K40c.

1. INTRODUCTION
Unprecedented growth of the compute capability of high perfor-

mance systems in the last few decades has pushed the envelope of
the most challenging scientific problems, from quantum chemistry,
to computational finance, to more recently, big data analytics. Solv-
ing large sparse linear systems of equations forms the backbone of
many scientific problems and takes a significant portion of the run
time. Thus, it is important to use highly scalable algorithms to fully
harness the increasing capability of computing systems.

Many linear solver algorithms, such as conjugate gradient or
GMRES [1], exhibit poor weak or strong scaling, because the num-
ber of iterations to reach the same level of accuracy increases with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2022 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807603

larger problems and because of inherent global synchronization,
such as all-reduce. Alternatively, multigrid solvers are well known
for their linear computational complexity1 and excellent scalability.
As a result, such solvers are well suited for the emerging extreme
scale systems which can deliver 100+ Pflops of performance [2].

There are two types of multigrid solvers. Geometric multigrid
uses the grid of a problem, whereas algebraic multigrid is applied
directly to the linear system matrix. As such, AMG is attractive be-
cause it approaches the asymptotic complexity and scalability of
geometric multigrid, while enabling the solution of more unstruc-
tured problems.

There has been a large body of work on parallelizing the origi-
nal AMG method [3]. One of the earlier parallel implementations
is BoomerAMG [4], an unstructured multigrid solver in the HYPRE
library. A lot of effort has been put into improving its scalability,
with regard to the time per iteration as well as the number of itera-
tions by improving coarsening algorithms and interpolation opera-
tors [5–7].

BoomerAMG was initially designed for distributed-memory ar-
chitectures, and later extended to hybrid MPI-OpenMP parallelism [8].
Still, AMG solvers need to adapt to the trend that a large portion of
the concurrency occurs within each chip. There is a CUDA im-
plementation of AMG called AmgX that has been optimized for
NVIDIA GPUs [9]. In [9], results are shown which state that AmgX
is on average a couple of times faster than HYPRE running on multi-
core Xeon processors. This result is partly understandable consid-
ering that the performance of AMG is memory bandwidth bound
and an NVIDIA GPU typically has higher memory bandwidth.

However, our paper shows that once optimized for modern x86
multi-core processors, HYPRE AMG running on a Xeon processor
can outperform AmgX running on an NVIDIA GPU. We exemplify
that not only the raw memory bandwidth provided by hardware but
also its efficient utilization is important. We showcase a series of
optimizations that can also be applied to other sparse matrix appli-
cations. A large fraction of the applied optimizations target cache
locality, thus also improving effective bandwidth utilization.

Specifically, this paper makes the following contributions.

• We present an AMG solver implementation highly optimized
for modern x86 multi-core processors that can benefit many
applications that use AMG. Because our implementation is
based on the widely-used HYPRE library, it can also benefit
its user base.

• We document optimizations that can be useful for other sparse
solver libraries such as Trilinos [10], PETSc [11], and future

1In multigrid both the number of iterations to convergence and the
time per iteration step are constant or near-constant as the problem
size increases.

http://dx.doi.org/10.1145/2807591.2807603

sparse matrix applications/libraries that aim to optimize for
modern multi-core processors. Examples include reordering
of matrix rows and columns that optimize cache locality and
branching overhead, and an efficient assembly of matrix rows
received from other MPI ranks in matrix-matrix operations.

• We compare the performance of our optimized implementa-
tion with AmgX and the baseline HYPRE. Our optimized
BoomerAMG running on one socket of 14-core Xeon E5-
2697 v3 at 2.6 GHz outperforms AmgX running on K40c by
1.3× despite of the gap in memory bandwidth (54 GB/s vs.
249 GB/s STREAM bandwidth [12]). Compared to the base-
line HYPRE, our optimized implementation improves the single-
node performance by a factor of 2.

• We evaluate our optimized implementation up to 128 nodes
in both weak and strong scenarios. We observe that setup
phase has worse scalability than solve phase. We also show
that our optimizations reduce performance gap between the
currently popular multipass interpolation and more numeri-
cally robust 2-stage extended+i interpolations.

The rest of this paper is organized as follows. §2 overviews
AMG algorithm and related work. §3 and §4 present a series of op-
timizations, first the ones for multi-core processors, and then those
for multi-node scaling. §5 quantifies the impact of optimizations
and compares the performance of our implementation with that of
the baseline HYPRE and AmgX. §6 concludes and discusses future
work.

2. ALGEBRAIC MULTIGRID AND RELATED
WORK

Multigrid methods are effective scalable solvers and well suited
for high performance computers, since, when properly designed,
they can solve a linear system with n unknowns in O(n) com-
putations. They achieve this optimality by eliminating errors that
cannot be removed with a few smoothing steps in the current grid
resolution via coarse-grid correction on successively coarser grids.
Algebraic multigrid (AMG), differs from geometric multigrid in that
it does not use the actual grid, but instead is applied directly to the
linear system Ax = b, enabling it to also solve unstructured prob-
lems.

Algebraic multigrid consists of a setup phase and a solve phase.
In the setup phase, the coarse grid variables, interpolation opera-
tors Pl, restriction operators Rl (often Rl = PT

l), and the coarse
grid matrices Al+1 = RlAlPl are determined for l = 0, 1, ...,m
levels, where A0 = A. During the solve phase, one or two steps of
a smoother, i.e., a generally simple iterative method such as Jacobi
or Gauss-Seidel, are applied at each grid level. The improved guess
is then restricted to the next coarser level until the coarsest level is
reached, which can be solved with a direct method or approximated
with a few smoothing steps. The solution or approximation of the
coarse grid solve is then interpolated back up, level by level, to the
finest level, applying smoothing again on each level. The complete
cycle, which is called a “V-cycle”, is then repeated until the desired
convergence tolerance is reached. There are two important mea-
sures that determine the quality of an AMG algorithm. The first is
the convergence factor, which indicates how fast the method con-
verges. The second is the operator complexity, which affects the
number of operations and the memory usage. Operator complex-
ity is defined as the sum of the number of non-zeros of Al over
l = 0, ...,m divided by the number of non-zeros of A. An AMG
solver can be scalable (i.e., O(n) computations for n unknowns)

when the number of iterations to converge isO(1) and the operator
complexity is O(n).

We define a few notations here that will be used in the subse-
quent sections. Point j is a neighbor of i if and only if there is a
non-zero aij . Point j strongly influences i if and only if −aij ≥
αmaxk 6=i(−aik), where α is the strength threshold. This strong
influence relation is used to select coarse points. The selected
coarse points are retained in the next coarser level, and the remain-
ing fine points are dropped. Let Cl and Fl be the coarse and fine
points selected at level l, and let nl be the number of grid points at
level l (n0 = n). Then, nl = |Cl| + |Fl|, nl+1 = |Cl|, Al is a
nl × nl matrix, and Pl is a nl × nl+1 matrix.

There has been a lot of research on variants of AMG since the
development of the first AMG method in the 80s [3]. A detailed
summary can be found in [13]. One of the issues of the original
classical AMG method is that — while it converges fast — it of-
ten generates excessive operator complexities, especially for three-
dimensional problems. This problem is exacerbated for parallel im-
plementations of AMG. Consequently, efforts were made to coarsen
more aggressively to reduce operator complexities, e.g. [6]. More
aggressive coarsening leads to often considerably reduced conver-
gence, since it violates conditions required for classical interpo-
lation. Convergence can be improved again by combining more
aggressive coarsening with long distance interpolation [14].

Alternatively, aggregation AMG coarsens by aggregating points
to obtain the points used on the next level [15, 16] rather than split-
ting into coarse and fine points as in classical AMG. Aggregation
AMG typically leads to faster setup and lower operator complex-
ity, but often at the expense of a sub-optimal asymptotic conver-
gence rate [13]. The reduced convergence can be compensated
by a method called smoothed aggregation AMG [17], which of-
ten leads to a high operator complexity [18]. The convergence
of unsmoothed aggregation AMG can also be improved using K-
cycles [19]. Because a K-cycle is more expensive than a V-cycle,
this approach adds complexity to the solve phase.

There has been a lot of research on GPU implementations of AMG
and comparisons with CPU-based implementations [9, 18, 20–22].
Unsmoothed aggregation AMG has been particularly popular for
GPUS due to its typically lower operator complexity that suits lim-
ited GDDR memory capacity [9, 18, 22]. NVIDIA AMGX in par-
ticular uses unsmoothed aggregation AMG without K-cycles. This
approach often converges slower than classical AMG. The focus of
this paper is not comparing different variants of AMG algorithms,
but a fair comparison of HYPRE running on a CPU with AmgX run-
ning on a GPU using as similar settings as possible. Therefore, our
comparison uses classical AMG for both libraries.

In the experiments presented here, PMIS coarsening is used, due
to its high parallelism and since it is also used in AmgX’s version of
classical AMG. It is combined with extended+i interpolation, since
this often leads to better convergence than the other distance-two
interpolation operators [7]. As a smoother, we mainly use hybrid
Gauss-Seidel, i.e. Gauss-Seidel within a task, but Jacobi across
parallel tasks, since this generally leads to better convergence than
the completely parallel Jacobi smoother, but still provides sufficient
parallelism compared to lexicographical Gauss-Seidel smoothing.
Multi-color or block multi-color Gauss-Seidel [23] is another smoother
that provides high parallelism, which has been particularly popular
for GPUs [24] and implemented in AmgX [25]. For a more detailed
discussion on parallel smoothers, see [26].

3. OPTIMIZATIONS FOR MULTI-CORE PRO-
CESSORS

While there has been a large body of research on achievingO(n)
algorithmic scalability of AMG, its scalable parallel implementation
is critical in practice for two reasons. First, one often wants to re-
duce time to solution, and second, solving a large problem often
requires the memory of more than a few compute nodes. The op-
timized parallel implementation of AMG poses unique challenges,
since AMG, compared to other solvers, consists of a diverse set of
subroutines and irregular, unstructured computation. Addressing
these parallelization challenges both for multi-core and multi-node
architectures is the focus of this paper. This section presents our
parallel optimizations for multi-core processors.

3.1 Setup Phase
In the setup phase, we focus on the two most time consuming

steps: the triple sparse matrix product used for construction of the
coarse grid operator, as well as the construction of the interpolation
operator.

3.1.1 Triple Sparse Matrix Product
We construct the grid operator at level l+1,Al+1, byRl ·Al ·Pl,

whereRl is the restriction operator,Al is the fine grid operator, and
Pl is the interpolation operator, respectively at level l. This triple
sparse matrix product is also called Galerkin coarse grid operator
or RAP product. In most cases, R = PT , and thus we typically
compute PT

l AlPl.
Building Block SpGEMM: The building block of this triple

sparse matrix product is the sparse matrix-matrix multiplication
(SpGEMM). A classical SpGEMM algorithm is proposed by Gus-
tavson [27], and its optimized implementation on an x86 architec-
ture is recently described by Patwary et al. [28]. Our implementa-
tion is also based on [28].

Among the improvements upon the original Gustavson’s algo-
rithm, the one that has the biggest impact in the context of AMG is
reading the input matrix only once rather than twice. Specifically,
one obstacle to efficient SpGEMM is that the size of the output ma-
trix is unknown a priori. Therefore, traditional implementations of
SpGEMM inspect input matrices in a preprocessing step to count
the number of non-zeros of each output matrix row. Then, mem-
ory is allocated for the output matrix, and each thread is set to the
memory location where it can start populating its portion of the
multiplication result. This is followed up by the actual multipli-
cation step where the input matrices are read again. In contrast,
our implementation pre-allocates a large enough chunk of memory
to each thread, which then stores the multiplication results to its
assigned chunk. When all threads are finished, we copy the dis-
joint memory chunks from each thread to a contiguous region of
memory allocated for the final result. This approach eliminates one
read of row pointers and column indices in the input matrices at the
expense of an additional copy of the output matrix. This is bene-
ficial because reading the second input matrix involves expensive
non-contiguous accesses, while copying results into the output ma-
trix is contiguous. Furthermore, in AMG, the output matrix Al+1 is
typically a couple of times smaller than Al; thus saving one input
matrix read more than offsets the cost of of copying output ma-
trix. Note that this optimization relies on efficient virtual memory
management in modern operating systems that allow pre-allocating
a large chunk of memory without significant overhead and often
lazily bind a physical page to a virtual page only when it is actually
accessed.

SpGEMM is not the only sparse matrix operation in AMG where
the size of the output matrix is unknown a priori. Other routines
in the setup phase that require the determination of the size of the
output matrix are the construction of the strength matrix and the

1: for each row i in matrix R do
2: ~Bi ← ~0, ~Ci ← ~0
3: for each non-zero rij in ~Ri do
4: for each non-zero ajk in ~Aj do
5: bik += rij · ajk
6: for each non-zero bij in ~Bi do
7: for each non-zero pjk in ~Pj do
8: cik += bij · pjk

(a) Our optimized implementation
1: for each row i in matrix R do
2: ~Ci ← ~0
3: for each non-zero rij in ~Ri do
4: for each non-zero ajk in ~Aj do
5: temp← rij · ajk
6: for each non-zero pkl in ~Pk do
7: cik += temp·pkl

(b) Alternative way of fusion in the baseline HYPRE

Figure 1: Pseudo code of triple matrix product R ·A ·P with fused
sparse matrix-matrix multiplications

interpolation operators, where we apply similar optimizations.
SpGEMM Fusion: Using this efficient SpGEMM implementa-

tion as a building block, we further optimize the triple sparse ma-
trix product by fusing the two SpGEMM operations together to im-
prove cache reuse. A straightforward way of computing RAP is
first finishing B = RA then starting C = BP . Instead, immedi-
ately after computing Bi, the ith row of the temporary matrix B,
we compute Ci. In this way, when computing Ci, we are likely
to access row Bi out of cache, as opposed to streaming it from
memory, as in the unfused original implementation. The pseudo
code is shown in Fig. 1(a). In this code, we denote matrix rows
as if they are dense vectors for illustration purposes, while, in re-
ality, they are sparse vectors. The accumulation to a sparse vector
can be implemented using an auxiliary marker array, which will
be explained shortly. The baseline HYPRE uses an alternative way
of fusion shown in Fig. 1(b). While this approach further reduces
space required for the temporary matrix B, it involves redundant
floating point operations and memory accesses. Suppose non-zeros
r11, r12, a11, a21, and p11. The code in Fig. 1(a) computes b11
by r11a11 + r12a21 then computes c11 by b11p11, a total of 4
floating point operations. The code in Fig. 1(b) computes c11 by
r11a11p11 + r12a21p11, which are 5 floating point operations. We
measure that our new fusion approach requires on average 1.73×
fewer floating point operations in the finest level triple matrix prod-
uct for the matrices evaluated in §5.2.

Reordering of the Interpolation Matrix: In classical AMG, the
interpolation function for error values at coarse points is the iden-
tity. Therefore, we can permute the nl × nl+1 interpolation matrix

P at multigrid level l to the form of
[
Inl+1

PF

]
, where the block

with the first nl+1 rows is an identity matrix. Then, we can rewrite
the coarse grid construction as follows:

RAP =
[
I PT

F

] [
ACC ACF

AFC AFF

] [
I
PF

]
= ACC + PT

F AFC +
(
ACF + PT

F AFF

)
PF .

Therefore, we only need a triple matrix product for the (nl−nl+1)2

submatrix AFF . This optimization is particularly effective for ma-
trices that lead to large operation complexities, where nl+1

nl
is high.

The overhead of permuting interpolation matrices is easily amor-

tized because the permutation also speeds up interpolation con-
struction and solve phase as will be shown in the subsequent sec-
tions.

Software Prefetching: Since the R matrix is accessed contigu-
ously, the hardware prefetcher effectively captures its spatial local-
ity. The challenge remains in the non-contiguous access of the P
matrices and especially the larger A matrices. While we are work-
ing on the j1th row of A that corresponds to non-zero rij1 , we
prefetch the j2th row of A where rij2 is the next non-zero in ith
row of R in software. Due to the indirections in the sparse matrix
data structure, this access pattern is not captured by the hardware
prefetcher of the current processors. We also unroll the innermost
loop 8 times to facilitate prefetching cache line by line, which also
helps instruction level parallelism.

Branching Overhead in Sparse Accumulation: We observe
that branching is a significant performance bottleneck from the
Vtune profile results. Branching is also an obstacle to vectorization
in the current x86 SIMD instructions. SpGEMM is branch heavy be-
cause of accumulation in the sparse vectors. Specifically, the sparse
vector Bi = RiA is computed by a weighted sum of sparse vec-
tors Aj1 , Aj2 , ..., where Ri has non-zeros in columns j1, j2, and
so on. An idiom of accumulating multiple sparse vectors is using
an auxiliary marker array (denote this as marker). The content of
marker[i] is the location in the output sparse vector where the ith
element should be accumulated to. If this is the first time to accu-
mulate the ith element, this information can also be obtained from
marker. The marker array can be viewed as the inverse mapping of
column indices in compressed sparse row format. The pseudo code
below shows SpGEMM with C = AB. If marker[k] is smaller
than C.rowptr[i], it is the first time to accumulate Cik. Then, we
append k to C.colidx, set marker[k] to the current number of
non-zero, nnz, and increment nnz. Otherwise, marker[k] points
to the location of C.values where we should accumulate.
1: marker[:]← -1
2: for each row i of A do
3: C.rowptr[i]← nnz
4: for each non-zero aij in Ai do
5: for each non-zero bjk in Bj do
6: if marker[k] < C.rowptr[i] then
7: C.colidx[nnz]← k
8: C.values[nnz]← aij · bjk
9: marker[k]← nnz

10: ++nnz
11: else
12: C.values[marker[k]] += aij · bjk

This idiom is one of the most efficient ways of implementing
an abstraction called sparse accumulator (SPA) that can be used as
a building block of various sparse matrix operations as in MAT-
LAB [29]. Accumulation of sparse vectors can also be viewed as
a set union operation where values associated with the same key
are reduced with addition. The marker array is essentially used as a
hash table through which set union operations are done. This idiom
also appears in other AMG setup routines such as coarsening and the
construction of the interpolation matrix. This implies that branch-
ing can be a bottleneck in these other sparse matrix operations as
well. We estimate this branching overhead by running a version
of the triple matrix product where rowptr and colidx are already
populated. This version has less branching overhead and can be
used for repeatedly computing matrix products with the same non-
zero patterns [27]. We observe on average 2.1× speedups, which
shows potential for optimizing the branching overhead.

3.1.2 Interpolation Construction
This step constructs an nl × nl+1 interpolation operator matrix

P where nl is the number of grid points in the finer level l and nl+1

is the number of grid points in the coarser level. Extended+i inter-
polation [7] is a distance-two interpolation that can compensate for
convergence deterioration resulting from the use of more aggres-
sive coarsening like PMIS, and can be computed via the following
formula:

wij = −
1

ãii

aij +
∑
k∈Fs

i

aik
ākj

bik

 , j ∈ Ĉi, (1)

with

ãii = aii +
∑

n∈Nw
i \Ĉi

ain +
∑
k∈Fs

i

aik
āki

bik
,

bik =
∑

l∈Ĉi∪{i}

ākl, ākl =

{
0, if sign(akk) = sign(akl)

akl, otherwise,

where Ni is the set of neighbors of i, Si is the set of neighbors
of i that strongly influence i, FS

i contains the fine points in Si,
CS

i the coarse points in Si, Nw
i = Ni \ (FS

i ∪ CS
i), and Ĉi =

CS
i ∪

⋃
j∈FS

i
CS

j .
In a distance-two interpolation we interpolate a point i not only

from i’s strongly influencing neighbors but also their respectively
strongly influencing neighbors. In this respect, extended+i interpo-
lation is similar to SpGEMM: when we multiply matrix A with B,
for a given row i in A, we not only access each of i’s neighbors j
that corresponds to a non-zero aij but also accesses neighbors of j
that correspond to non-zeros in the jth row of B.

Similarly to the coarse operator construction, the size of the re-
sultant interpolation matrix is unknown a priori. Therefore, we ap-
ply the same technique of pre-allocating a large chunk of memory.

Also similarly to coarse operator construction, the interpolation
operator construction has frequent if-else branches. In addition to
a marker array checking for sparse accumulation, extended+i inter-
polation needs to distinguish fine points, coarse points with non-
negative coefficients, and coarse points with negative coefficients,
as can be seen from the above equation. We renumber coarse and
fine points so that coarse points precede fine points, and permute
matrices accordingly. Recall that this permutation is also used in
the coarse operator construction, and it also helps smoothing oper-
ations that will be described in § 3.2. While we are permuting A,
we also partition the coarse point columns in each row into those
with non-negative coefficients and the others. As a result, each row
will have three partitions: coarse point columns with non-negative
coefficients, coarse point columns with negative coefficients, and
fine point columns. This three way partitioning (i.e., partial sort-
ing) requires only one sweep of data with O(n) complexity rather
than O(nlogn) of full sorting, where n is the number of non-zeros
in a matrix row.

Despite of these similarities with coarse operator construction,
the actual computation performed in the interpolation is quite dif-
ferent as can be seen from Equation 1. The computation in the
interpolation matrix construction is arranged in a way that the bik
term for a given i and k ∈ FS

i is evaluated only once. To opti-
mize for memory bandwidth, we fuse the interpolation construc-
tion with the interpolation truncation. The interpolation matrix is
often truncated to keep the operator complexity small. For ma-
trix row i, we set the truncation threshold to min(trunc_fact ×
ai(1), ai(max_elmts), where ai(1) is the largest absolute value of the
non-zeros and ai(max_elmts) is the max_elmtsth largest absolute value

1: copy ~x to ~temp_x
2: [is:ie)← range of points this thread works on
3: for i in [is:ie) do . Old hybrid GS for fine points
4: if i is a fine point then
5: acc← b[i]
6: for j in [rowptr[i]:rowptr[i+1]) do
7: if j ∈ [is:ie) then
8: acc −= x[colidx[j]]
9: else

10: acc −= temp_x[coidx[j]]
11: x[i]← acc

(a) The baseline
1: copy ~x to ~temp_x
2: [isf :ief)← range of fine points this thread works on
3: for i in [isf :ief) do . New hybrid GS for fine points
4: acc← b[i]
5: for j in [rowptr[i]:extptr[i]) do
6: acc −= x[colidx[j]]

. extptr[i]: the first index belong to other threads
7: for j in [extptr[i]:rowptr[i+1]) do
8: acc −= temp_x[colidx[j]]
9: x[i]← acc

(b) Optimized hybrid GS with reordering

Figure 2: Pseudo code of hybrid Gauss-Seidel smoothing for fine-
grid points. Smoothing for coarse points is similar.

of the non-zeros in row i. Non-zeros whose absolute values are
below that this threshold is truncated. Typical values of the pa-
rameters trunc_fact and max_elmts are 0.1 and 4, respectively,
that are used in §5. Instead of writing the entire interpolation ma-
trix and then truncate it, we apply truncation to each interpolation
matrix row immediately after the row is constructed.

3.2 Solve Phase
Smoothing: The interpolation construction in the setup phase

permutes the operator matrix so that coarse points precede fine
points as presented in §3.1.2. This also helps avoiding branches
and improves spatial locality in smoothing. AMG often incorpo-
rates C-F smoothing where we apply smoothing first to the coarse
points and then to the fine points in pre-smoothing and vice versa
in post-smoothing [26]. Instead of checking if it is a coarse point
for each row, we simply iterate over the coarse point range in the
permuted matrix, and similarly for the fine points. In addition to
reducing branching overhead, it helps the hardware prefetcher to
be more effective.

Before the solve phase, we partition the non-zeros of lower and
upper diagonals within each row of Al. This allows us to skip the
upper diagonals when the output vector for smoothing is initial-
ized as zeros, which is common for pre-smoothing of coarse points.
When using hybrid Gauss-Seidel smoothing, a 3-way partitioning
is used to further separate out columns belonging to other threads.
In hybrid smoothing, the output vector is copied to a temporary
buffer, and we read the temporary buffer for columns belonging
to other threads to honor write-after-read dependencies. By sepa-
rating out columns belonging to other threads, we further reduce
the branching overhead. Fig. 2 shows how hybrid Gauss-Seidel
smoothing can be optimized using these reordering techniques.

Interpolation and Restriction: Interpolation and restriction also
account for a significant fraction of solve time. These operations
are implemented as sparse matrix vector multiplications (SpMV);
interpolation multiplies P , and restriction multiplies R = PT . As
in the coarse operator construction, we exploit that P at level l
can be permuted so that the first nl+1 rows are an identity matrix.

Therefore, in the SpMVs for interpolation and restriction, we only
need to access the remaining (nl − nl+1) × nl+1 matrix, saving
memory bandwidth. In the baseline HYPRE, the transpose of P is
computed for every restriction. We instead keep R = PT created
for the coarse grid construction to reduce the transpose overhead.

3.3 Other Optimizations
We also apply the following relatively simple optimizations. While

simple, these optimizations have a substantial impact on the per-
formance. Some of these optimizations, in particular those related
to OpenMP parallelizations, have not previously been incorporated
because HYPRE AMG has focused more on multi-node scaling us-
ing MPI.

• Strength matrix creation: The final matrix creation is par-
allelized using prefix-sum.

• PMIS coarsening: We use the parallel random number gen-
erator in the Intel Math Kernel Library.

• Matrix transpose: We parallelize the matrix transpose using
a parallel counting sort. The load balancing is maintained by
partitioning rows among the threads in a way that each thread
works on a similar number of non-zeros.

• Fusion of SpMV and inner-product: We fuse the sparse-
matrix dense-vector multiplication (SpMV) with the inner
product when computing the residual norm. When the output
vector of SpMV is only used for computing its inner product,
we can save the memory bandwidth of writing the output
vector.

4. OPTIMIZATIONS FOR MULTIPLE NODES
This section presents optimizations we applied for multi-node

scaling. To provide the background, we start with the distributed
matrix representation in HYPRE.

4.1 Distributed Matrix in HYPRE
In HYPRE, a distributed matrix is partitioned among MPI ranks

by ranges of rows (more details in [30]). For example, as shown
in Fig. 3(a), a matrix with 6 rows is distributed among 3 MPI ranks
so that rank 0 owns the first 2 rows, and rank 1 owns the second 2
rows, and so on. Rank pmaintains two local compressed sparse row
(CSR) matrices to represent its portion, one matrix that corresponds
to the rank’s block diagonal portion (denoted as Ad

p) and another
that corresponds to its block off-diagonal portion (denoted as Ao

p).
In our example in Fig. 3(a), rank 0 has Ad

0 that represents the first
2×2 block diagonal portion of the distributed matrixA, andAo

0 that
represents the remaining portion of the first 2 rows. In the block
off-diagonal matrix, column indices are “compressed” so that we
can easily index the external vector elements that will be stored in
a contiguous location after gathering from other ranks. In Fig. 3(a),
Ao

0 has non-zeros only in columns 2 and 5, and we renumber them
as 0 and 1. We build colmap array that inverse maps to the original
global column indices.

The reason for this compression should become clear with the
example of the sparse matrix vector multiplication in Fig. 3(b).
Based on the values stored in colmap, we gather vector elements
necessary for SpMV but stored in other ranks. We call this MPI
communication halo exchange because the elements that are gath-
ered correspond to halo (i.e., boundary) points that have a connec-
tion with the given MPI rank. The gathered external vector elements
are stored in a contiguous location of a vector and their indices

0 1 2 3 4 5

0

1

2

3

4

5

0 1

0

1

2 5

0 1

𝐴0
𝑑 𝐴0

𝑜

𝐴0
𝑜:rowptr = [0, 1, 3]

colidx = [0, 0, 1]

colmap = [2, 5]

𝐴0
𝑑:rowptr = [0, 1, 2]

colidx = [0, 1]

local idx
global idx

𝐴0
𝑑 𝐴0

𝑜

Compress
colidx

(a) An example distributed matrix in HYPRE. The matrix is partitioned by
rows. Each MPI rank p stores its block diagonal portion Ad

p and its block
off-diagonal portion Ao

p separately, both in compressed sparse row format. In
the block off-diagonal matrix, column indices are compressed to facilitate
operations such as SpMV. The array colmap maps the compressed local
column indices back to the global column indices.

2 5

0 10 1

0

1

𝑥0
𝑑 𝑥0

𝑜

𝑦0 =

Halo Exchange
Communication

𝐴0
𝑑 𝐴0

𝑜𝑥0
𝑑 𝑥0

𝑜
x x

SpMV
Computation

+

(b) SpMV operation of y = A · x. Rank 0 gathers x[2] and x[5] that are
needed for SpMV but belong to other ranks (colmap tells us which
elements we should gather). We call this MPI communication halo
exchange. They are copied to a contiguous location as a separate vector xo

0,
and this vector is multiplied with Ao

0 using the local SpMV routine. The
halo exchange is overlapped with computation of Ad

0 · xd
0 .

0 1

0

1

2 5

0 1

2 5

0 1

2 5

0 10 10 1

0

10 1

0

1

2 5 4

0 1 2

Halo Exchange Communication

Gather from
other ranks

0 1 2 3 4 5

2

5
𝐵0
𝑑′ 𝐵0

𝑜′ 𝐵0
𝑑′ 𝐵0

𝑜′

Compress idx

𝐶0
𝑑 = 𝐴0

𝑑 x 𝐵0
𝑑

+ 𝐴0
𝑜

0 1

𝐵0
𝑑′

𝐴0
𝑑 𝐵0

𝑜 𝐴0
𝑜

2 5 4

0 1 2

𝐵0
𝑜′

SpGEMM Computation

x

x x+
𝐶0
𝑜 =

(c) The SpGEMM operation of C = A ·B (B has the same sparsity pattern as A for simple illustration). Rank 0 gathers the third and sixth rows of B that
are needed for SpGEMM but belong to other ranks, and assembles as a matrix denoted as B′

0. Because its block off-diagonal portion, Bo′
0 , has additional

column 4 that does not exist in Bo
0 , we append an entry to colmap.

Figure 3: An example distributed matrix (a), SpMV (b) and SpGEMM operations (c).

within the vector matches with the compressed local column in-
dices. Therefore, we can reuse the same local SpMV routine for
both the block diagonal and off-diagonal parts.

Distributed SpGEMM proceeds similarly but with more chal-
lenges. Suppose that we compute C = A · B as in Fig. 3(c).
By looking at colmap, rank p determines matrix rows needed for
SpGEMM but stored in other ranks, then gathers these rows us-
ing MPI communication and assembles a matrix we denote as B′

p.
Note that this halo exchange step involves gathering matrix rows
rather than gathering vector elements as in SpMV, hence leading
to a larger communication volume. In addition, the portion of ma-
trixB′

p gathered from other ranks can contain off-diagonal columns
that do not exist in Bo

p . For example, in Fig. 3(c), rank 0 gathers
row 5 of B from rank 2, and this row has column 4 that does not
exist in rank 0’s portion of matrixB. Therefore, we need to renum-
ber the indices of off-diagonal columns. In Fig. 3(c), we append
column 4 to colmap and assign a local column index 3 to it.

We identify that this renumbering accounts for a significant frac-
tion of various routines used in the setup phase such as coarse op-
erator construction, interpolation construction, and matrix trans-
pose, hence a bottleneck in multi-node scaling. Recall that ex-
tended+i interpolation traverses neighbors of neighbors, and, there-
fore it needs a similar halo exchange of matrix rows (rather than ex-
change of vector elements) and accompanied renumbering pattern.
There are two reasons why this renumbering for SpGEMM-like op-
eration takes a considerable amount of time. First, SpGEMM has
substantially more column indices to renumber than SpMV does.
SpGEMM needs to renumber neighbors of neighbors, while SpMV
only needs to renumber neighbors. Second, for each matrix, we ap-
ply SpGEMM-like operations such as coarse grid construction and

1: hash_table H ← ∅ . H is thread-private
2: for each jth non-zeros in matrix B′

p in parallel do
3: c← B′

p.colidx[j]
4: if c /∈ { rows that p owns } and c /∈ Bp.colmap then
5: H ∪ = c
6: B′

p.colmap← sort and eliminate duplicates of Hs in parallel
7: reverse_colmap← hash table for reverse of Bp.colmap
8: for each jth non-zeros in matrix B′

p in parallel do
9: c← B′

p.colidx[j]
10: if c /∈ { rows that p owns } and c /∈ Bp.colmap then
11: B′

p.colidx[j]← reverse_colmap[c] + Bp.colmap.size()

Figure 4: Optimized implementation of column index renumbering

interpolation only once. This is in contrast to SpMV that are repeat-
edly applied per iteration in the solve phase, where the renumbering
cost can be amortized. The next section presents our optimization
applied to column index renumbering to address these challenges.

4.2 Parallelization of Column Index Renum-
bering

The column index renumbering roughly translates into a prob-
lem of sorting while eliminating duplicates. A slight variation is
that rank p only renumbers new column indices that do not already
exist in Bp. A straight forward implementation would append all
new column indices to an ordered set, but parallelization of this
approach would involve a concurrent binary tree that has limited
scalability. Instead, as in the pseudo code shown in Fig. 4, each
thread builds a thread-private hash table of the column indices for
the portion of the matrix assigned to the thread. Here, we exploit

Table 1: Evaluation Settings

HYPRE AmgX
Version 2.10.0b (2015.1.22) 2014.12.22

Compiler Intel compiler 15.0.2 CUDA 6.5
Processor Xeon E5-2697 v3 (HSW) Tesla K40c

1 Socket × 14 Cores × 15 multiprocessorsParallelism 2-wide SMT × 4-wide SIMD 2,880 CUDA cores
Memory 32 GB 12 GB

Clock 2.6 GHz 876 MHz
32KB private L1$ 64KB constant mem
256KB private L2$ 48KB shared memOn-chip stores
35,840KB shared L3$ 1,536KB shared L2$

STREAM triad BW 54 GB/s 249 GB/s (ECC off)

the locality of common matrices arising from scientific problems:
adjacent rows share many non-zeros in common columns. Because
of this locality, each thread-private hash table filters out a large frac-
tion of duplicated column indices without incurring synchroniza-
tion overhead. Later, we merge the thread-private hash tables into a
single sorted array, B′

p.colmap, using parallel merge sort [31] with
a modification that also eliminates duplicates. Then, we construct a
hash table that maintains the reverse mapping of B′

p.colmap. This
hash table is actually a collection of thread-private hash tables par-
titioned over input ranges. We equally partition the B′

p.colmap
among threads and have each thread construct its own reverse map-
ping with hash table. Since the input forward mapping is already
sorted without duplicates, each thread will construct a hash table
for disjoint input ranges. Finally, we renumber each new column
index, by first doing a binary search to find which hash table to
look up, and then looking up the selected hash table. Alternatively,
we can binary search B′

p.colidx for each new column index with-
out constructing the reverse mapping. However, constructing the
reverse mapping reduces the time complexity of each lookup from
O(log n) to O(log t), where n is the size of B′

p.colmap and t is
the number of threads.

4.3 Eliminate Unnecessary MPI Data Trans-
fers in Interpolation Construction

As can be seen in Equation 1, to compute a non-zero in the re-
sultant interpolation matrix wij , in addition to the ith row of A, we
need to access the kth row of A where k ∈ FS

i . This kth row can
be located in a remote MPI rank. Instead of fetching the entire kth
row, we filter out many of its non-zeros that are not used for inter-
polation construction. For example, we only access akj such that
j ∈ Ĉi or j = i. We also do not need akj such that its sign is same
as aik. §5.3 will show that this optimization leads to a significant
reduction of MPI data transfers.

4.4 Other Optimizations
During the solve phase, we repeat the same pattern of exchang-

ing data among MPI ranks. Instead of repeatedly calling the same
set of MPI_Isends and MPI_Irecvs in each data exchange, we cre-
ate persistent communication requests before the solve phase and
simply call a single MPI_Startall for each exchange. Persistent
communication amortizes various set up costs. For example, we
can reuse data structures generated for lower level protocols like
InfiniBand verbs. The MPI run-time can also handshake with the
network interface hardware in one transaction instead of one for
each Isend/recv.

5. EVALUATION
This section evaluates the performance of our optimized HYPRE

AMG implementation. We quantify and analyze its single-node per-

Table 2: Sparse matrices used in single-node experiments.
Lap2d_2000 can be generated from AMG2013 benchmark.
Lap3d_128 is from HPCG benchmark [32]. The other matrices
are from University of Florida Collection [33].

rows nnz/row
1. 2cubes_sphere 101,492 9
2. G2_circuit 150,102 5
3. G3_circuit 1,585,478 5
4. StocF-1465 1,465,137 14
5. apache2 715,176 7
6. atmosmodd 1,270,432 7
7. atmosmodj 1,270,432 7
8. atmosmodl 1,489,752 7
9. ecology2 999,999 5

10. lap2d_2000 4,000,000 5
11. lap3d_128 2,097,152 27
12. parabolic_fem 525,825 7
13. thermal2 1,228,045 7
14. tmt_sym 726,713 5

Table 3: AMG parameter settings for single-node evaluation

Solver Standalone AMG (i.e., not as preconditioner)
Cycle V, max_levels=7

Classical, PMIS [4], str_thr=0.25 or 0.6∗,Coarsening
max_row_sum=0.8
Extended+i [7] with truncation optionsInterpolation
trunc_fact=0.1, max_elmts=4

Smoother Hybrid GS (HYPRE), GS (AmgX)
Relative tolerance 1e-7
∗Selected the one for faster time to solution for each matrix.

formance on the latest x86 multi-core processor, compare it with
the NVIDIA AmgX implementation, and finally study its scalability
on a multi-node system.

5.1 Setup

5.1.1 Single-Node
We evaluate HYPRE on a Haswell generation Intel Xeon proces-

sor and compare its performance with NVIDIA AmgX running on
K40c. Detailed specifications are listed in Table 1. In the Xeon pro-
cessor, we use a thread affinity setting of KMP_AFFINITY=granularity=fine,compact,1.
We do not use hyper-threading2. We use non-complex double pre-
cision numbers for all our experiments. We use the latest ver-
sions of both software packages and the latest compiler/run-time
that these packages support. We observe considerable speedups in

2Hyper-threading helps hide latency. Since our optimizations
already reduce latency, for example from reducing branch mis-
prediction by pre-sorting matrix elements, we see no speedup from
hyper-threading.

Table 4: AMG parameter settings for multi-node evaluation

Solver Flexible GMRES [34] with AMG preconditioner
Cycle V, max_levels=16

ei(4). same options as single-node
2s-ei(444). Top MG level: aggressive PMIS
and 2-stage extended+i interpolation [14]

Coarsening/ with truncation at every stage,
Interpolation Other levels: ei(4)

mp. Top level: aggressive PMIS and
multipass [35] interpolation,
Other levels: ei(4)

Smoother Hybrid GS
Relative tolerance 1e-7 (weak scaling), 1e-5 (strong scaling)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

H
Y
P
R
E
_
b
a
s
e

H
Y
P
R
E
_
o
p
t

A
m

g
X

2cubes... G2_circuit G3_circuit StocF-1465 apache2 atmosmoddatmosmodj atmosmodl ecology2 lap2d_2000 lap3d_128 parabolic… thermal2 tmt_sym

T
im

e
 N

o
rm

a
li
z
e
d
 t

o
 H

Y
P
R
E

Strength+Coarsen Interp RAP Setup_etc GS SpMV BLAS1 Solve_etc

Figure 5: Single-node performance comparison of the baseline HYPRE 2.10.0b (HYPRE_base), our optimized HYPRE (HYPRE_opt), and
AmgX. Times are normalized to the time to solution of HYPRE_base. Strength+Coarsen: strength matrix creation and PMIS coarsen-
ing, Interp: interpolation construction, RAP: Galerkin triple matrix product, Setup_etc: other setup times including pre-processing of
reordering, GS: Gauss-Seidel smoothing, SpMV: sparse matrix vector multiplication, BLAS1: vector scaling, addition, and inner-products,
Solve_etc: other solve times.

HYPRE version 2.10.0b released on January 2015 compared to the
prior versions such as the one used in comparison with AmgX [9].
Table 1’s last row also shows STREAM triad performance in GB/s,
which, in the first order of approximation, provides an upper-bound
on achievable performance of AMG. Thus, according to the STREAM
benchmark performance, AmgX is expected to be more than 4×
faster than HYPRE, as long as both software packages achieve sim-
ilar efficiency with respect to memory bandwidth.

The AMG implementation can be guided by a rich set of param-
eters, and its convergence, setup time, and time per each solve iter-
ation can widely vary for different parameters. Therefore, for fair
comparison of both software packages, we made an extra effort to
use as similar parameters as possible. These parameters are listed in
Table 3. Because HYPRE implements the classical AMG, we use the
classical AMG option in AmgX. We use the University of Florida
collection matrices [33] evaluated in NVIDIA’s comparison [9]. We
add 2D Laplace (5-point discretization) and a 3D Laplace (27-point
discretization) matrix, which are from AMG2013 [36] and HPCG
benchmarks [32], respectively. These matrices are listed in Table 2.

The settings used for our single-node experiments do not neces-
sarily result in the fastest time to solution (we use a relative residual
norm reduction of 1e-7 as the stopping criterion). For example, our
single-node experiments do not use AMG as a preconditioner of a
Krylov solver such as GMRES, which is often faster, in order to
reveal AMG performance only. Rather than the fastest time to solu-
tion, the focus of our single-node experiments is a fair comparison,
which can be quantified by operator complexities. When operator
complexities are similar, two AMG solvers are likely to generate
similar outputs such as interpolation and coarse grid operator ma-
trices in the setup phase. Among the evaluated matrices, the dif-
ference in operator complexity ranges between -14–2% (averages
-0.2% and standard deviations 4%).

While operator complexities quantify the similarity of setup phase
outputs, it is hard to do so for the solve phase because of the lack
of details on how AmgX smoothers are implemented. We find that
the GS option consistently provides a faster time to solution than the
MULTICOLOR_GS option in AmgX, but it is not clear exactly what
the GS option implements. We believe this is not a lexicographical
GS since its limited parallelism is not suitable for GPUs [24].

5.1.2 Multi-Node
In contrast to the single-node experiments, our multi-node exper-

iments use the best performing settings we were able to find, which

are listed in Table 4. We do not compare with multi-node AmgX re-
sults due to the lack of access to large enough GPU clusters. We use
AMG as the preconditioner of Flexible GMRES solver, and compare
multiple coarsening and interpolation settings that have consider-
able impact on the overall AMG performance. Among various in-
terpolation settings evaluated, we present 3 representative ones: the
default recommended setting used for our single-node experiments
(ei(4)) and two other settings with aggressive coarsening [35] ap-
plied to the top MG levels (2s-ei(444) with 2-stage extended+i
and mp with multipass interpolation). Aggressive coarsening with
long range interpolation is an important tool to maintain the scala-
bility of AMG with respect to both convergence factor and operator
complexity. While multipass interpolation [35] has been often used
for its simplicity, it has been shown that 2-stage extended+i interpo-
lation exhibits more robust numerical scalability for a wider range
of problems.

We study multi-node scalability on the Endeavor cluster, which
has the same Haswell generation Intel Xeon processor used for the
single-node evaluation. Each Endeavor cluster compute node has 2
such Xeon processors and 64 GB of memory. These compute nodes
are connected with an FDR Infiniband fabric with fat-tree topology.
We use Intel MPI 5.0.2.044, and run 1 MPI rank per processor (2
ranks per node) to optimize for NUMA.

We measure weak scaling with two input sets (3D Laplace matri-
ces and the default semi-structured matrices in AMG2013 bench-
mark [36]). We apply strong scaling to a problem that models an
elliptical PDE for permeability fields in reservoir simulation, gen-
erated geostatistically using sequential Gaussian simulations [37].
While this problem models a Poisson-like equation, it involves highly
discontinuous coefficients and is thus not well conditioned. We use
a tolerance of 1e-5 for the stopping criterion to reflect the accuracy
requirement of a typical application solving the equation.

5.2 Single Node Performance and Compari-
son with AmgX

Fig. 5 shows the time to solution normalized to that of the base-
line HYPRE (HYPRE_base). Our optimized version (HYPRE_opt)
is on average 2.0 and 1.3× faster than HYPRE_base and AmgX,
respectively. We first compare HYPRE_opt with HYPRE_base. We
verify that, when the baseline random number generator is used in
PMIS coarsening, HYPRE_opt results in the identical number of it-
erations and the final residual norm for all matrices. The results
shown in Fig. 5 are with parallel random number generation in

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

ei(4) 2s-ei(444) mp

ei(4)-opt 2s-ei(444)-opt mp-opt

(a) 3D Laplace setup time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

ei(4) 2s-ei(444) mp

ei(4)-opt 2s-ei(444)-opt mp-opt

(b) 3D Laplace solve time

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128

#
 o

f
It

e
ra

ti
o
n
s

of Nodes

ei(4) 2s-ei(444) mp

(c) 3D Laplace # of iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

ei(4) 2s-ei(444) mp

ei(4)-opt 2s-ei(444)-opt mp-opt

(d) AMG2013 semi-structured setup time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

ei(4) 2s-ei(444) mp

ei(4)-opt 2s-ei(444)-opt mp-opt

(e) AMG2013 semi-structured solve time

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128

#
 o

f
It

e
ra

ti
o
n
s

of Nodes

ei(4) 2s-ei(444) mp

(f) AMG2013 # of iterations

Figure 6: Weak scaling multi-node performance (a-c) 3D Laplace matrix with 27-pt discretization from HPCG benchmark [32], ∼27 non-
zeros per row, 963 ' 0.9M rows and ∼0.27 GB per rank. (d-e) The semi-structured input from AMG2013 benchmark [36], r=32 and
pooldist=1 (generates realistic inputs and requires ≥8 ranks), ∼8 non-zeros per row, ∼1.6M rows and 0.15 GB per rank.

MKL, and the number of iterations differs by 2% on average. Be-
cause the solve and setup time can contribute to the overall time
to solution differently depending on the context, we break down
solve and setup times. For example, while solving individual lin-
ear systems requires one setup for every solve, in time dependent
problems, setup will be called only occasionally.

In strength matrix creation and PMIS coarsening, we obtain on
average 6.1 and 3.1× speedups, respectively. The speedups in the
interpolation operator construction are not as big except for 3D
Laplace matrices. In fact, it slightly slows down for small matri-
ces such as 2cubes_sphere and G2_circuit because the time
for partially sorting each matrix row is not sufficiently amortized.
However, as will be shown, our partial sorting optimization clearly
benefits larger matrices evaluated for multi-node scaling. In the
triple matrix product used for coarse operator construction (RAP),
our memory optimizations described in §3.1.1 provide on average
1.4× speedup. The speedup is in general higher for larger matri-
ces, which is more important target for AMG as a scalable solver
algorithm.

In HYPRE_base, SpMV is the most time consuming kernel of
the solve phase, and transposing the interpolation matrix accounts
for a large fraction of it. By keeping the transpose of the inter-
polation matrix that is generated during the setup phase and using
it for the transposed-matrix vector multiplication to avoid trans-
posing the matrix for every restriction, we achieve an average of
3.7× speedup in SpMV. Hybrid Gauss-Seidel smoothing (GS) is
also sped up by 1.2× on average due to reordering of matrices.
This speedup accounts for the reordering overhead that is included
in Setup_etc. We also evaluate lexicographical GS based on an
efficient point-to-point synchronization [38], and fusion of lexico-
graphical GS and SpMV [39]. Lexicographical GS provides 1.26×
faster convergence on average. However, in the scenario of one
setup per every solve, the faster convergence does not compensate
for its limited parallelism and higher pre-processing overhead for
building dependency graphs, except for matrices with high inherent
parallelism such as lap3d_128 and parabolic_fem. If we con-
sider a scenario where setup cost can be amortized significantly,

we observe that lexicographical GS can be faster for 5 matrices
— G3_circuit, StocF-1465, lap3d_128, parabolic_fem, and
thermal2.

We now compare HYPRE_opt with NVIDIA’s AmgX. Because
AmgX only provides setup and solve times without further break-
down, we mark its setup and solve times as Setup_etc and Solve_etc.
Even with similar operator complexities, AmgX consistently re-
quires more iterations, 1.3× on average. We cannot exactly point
out the reason for this due to the lack of more detailed information
on its smoother. We believe however this is because the smoother
option GS we used invokes a hybrid GS that can lead to worse con-
vergence with higher concurrency. Multi-color GS smoothing with
option MULTICOLOR_GS provides on average 1.4× faster conver-
gence, but its setup and solve time is 1.2 and 2.8× higher than GS
on average, respectively. The setup time of AmgX is on par with
HYPRE_opt, 1.1× faster on average. The solve time of AmgX on
the other hand is 2.1× slower. Even if we compute per iteration
time to isolate the effect from the convergence drop, the solve time
is still on average 1.6× slower.

5.3 Multi-Node Weak Scaling Performance
Having shown that our optimized implementation greatly im-

proves the single-node performance of HYPRE AMG and is com-
petitive with AmgX, this section shows its scalability to multiple
nodes. Fig. 6 shows weak scaling results up to 128 compute nodes.

We compare multiple coarsening and interpolation schemes. Mul-
tipass interpolation (mp) provides faster setup, but extended+i based
interpolations (ex(4) and 2s-ei(444)) converges faster, thus pro-
viding faster solve, for the inputs evaluated. Therefore, the fre-
quency of setup will determine which interpolation scheme will be
overall the fastest. HYPRE_opt improves the best setup times (with
mp) by 2.0 and 2.7× on 128 nodes for the two inputs evaluated,
respectively. The best solve times among different interpolation
schemes are improved by 2.1 and 1.5×. Note that our optimiza-
tions reduce the gap between setup time of mp and that of other
interpolation schemes. Multipass interpolation has been proposed
earlier than the 2-stage interpolations, and thus more heavily opti-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ei(4) 2s-
ei(444)

mp ei(4) 2s-
ei(444)

mp ei(4) 2s-
ei(444)

mp

3D Lap AMG2013 Reservoir

T
im

e
 (

S
e
c
)

Solve_MPI
BLAS1
SpMV
GS
RAP
Interp

Figure 7: breakdowns of total (setup+solve) time of HYPRE_opt
on 128 nodes.

1.0

10.0

100.0

2 4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

mp ei(4)-opt 2s-ei(444)-opt mp-opt

(a) Setup time

0.1

1.0

10.0

100.0

2 4 8 16 32 64 128

T
im

e
 (

S
e
c
)

of Nodes

mp ei(4)-opt 2s-ei(444)-opt mp-opt

(b) Solve time

Figure 8: Strong scaling multi-node performance. 7 non-zeros per
row, 128M rows, 10 GB total. Note that y-axis is in log scale.

mized in the baseline HYPRE. However, 2-stage interpolations are
more numerically robust as shown in [14]. The time breakdown in
Fig. 7 shows that 2-stage aggressive coarsening trade-offs longer
interpolation construction time for shorter RAP and solve time.

For ideal weak scaling, AMG should exhibit a constant time-to-
solution as the number of nodes increases. In practice, the perfor-
mance deviates from the ideal due to two factors. First, the number
of iterations can gradually increase because of non-ideal coarsen-
ing and interpolation. For example, AMG often trade-offs conver-
gence for faster setup time [4]. Fig. 6(c) shows that the number
of iterations to convergence gradually increases for the 3D Laplace
matrix for all 3 interpolation schemes evaluated, while Fig. 6(f)
shows that the number of iterations mostly stays constant for the
semi-structured input from AMG2013 benchmark.

Second, the setup time and the time per iteration of the solve
phase can increase due to non-scaling parts of computation or com-
munication. Since this factor is more pronounced in strong scaling
scenarios, it will be discussed in the next section.

5.4 Multi Node Strong Scaling Performance

Figure 8 shows strong scaling results of the reservoir simula-
tion input with different interpolation schemes. The number of
iterations to converge stays constant at 8, 10, and 14, for ei(4),
2s-ei(444), and mp, respectively. We only show the fastest inter-
polation scheme (mp) for the baseline HYPRE to simplify the graph.

Even though our optimizations improve the setup time signifi-
cantly, the general trend still remains: the scaling of the setup is
less ideal than that of the solve. This indicates that setup scalabil-
ity will be a challenge for extreme scale AMG solvers, especially
in strong scaling settings. Among the setup routines, interpolation
construction and RAP product exhibit the worst scalability. The
speedup of interpolation construction from 2 to 128 nodes ranges
from 4.5 to 6.4, depending on the interpolation scheme. The same
of RAP product ranges from 4.2 to 5.0. In HYPRE_base, Interp
and RAP spend more than half of their time in MPI communica-
tion and renumbering column indices of the received non-zeros.
Efficient parallel renumbering of column indices (§4.2) speeds up
RAP by factors of 2.6 and 3.5 for the two inputs on 128 nodes with
ei(4), respectively. In addition to the optimization in renumber-
ing, Interp incorporates eliminating unnecessary MPI communi-
cation (§4.3), reducing the communication volume by more than
3× for both inputs. This leads to 8.8 and 2.8× speedups of inter-
polation construction with ei(4) on 128 nodes.

Even though the solve time scales better, when 128 nodes are
used, we still observe that the solve phase spends >60% of its
time in MPI communication. Solve_MPI bar in Fig. 7 includes
halo exchange and all-reduce times, and the halo exchange in dis-
tributed SpMV and hybrid GS accounts for more than 80%. On
128 nodes, we observe 1.8 and 1.7× speedups of halo exchanges
by using persistent communication. When we strong scale to 128
nodes, MPI messages in halo exchanges become less than 100 KB
long. We measure less than 1 GB/s effective uni-directional band-
width per node for these messages, about 1/6 of the peak expected
from the Infiniband fabric in Endeavor cluster. This scalability is-
sue in the AMG solve phase is also studied by Gahvari et al. [40],
and they suggest to reduce the communication volume by trading it
for redundant computation or by new coarsening and interpolation
schemes to create operators with less communication.

6. CONCLUSION AND FUTURE WORK
This paper presents an AMG implementation based on the widely

used HYPRE library optimized for x86 multi-core processors. On a
single node, our implementation outperforms the baseline HYPRE
AMG and NVIDIA’s AmgX by 2.0 and 1.3×, respectively. Our opti-
mized implementation provides similarly high speedups compared
to the baseline HYPRE AMG in multi-node settings, especially when
numerically robust long-range interpolation schemes are used.

This paper also lays out interesting future work. First, achieving
setup scalability is more challenging than solve scalability, in par-
ticular when constructing the interpolation. By incorporating tech-
niques such as aggressive coarsening, long-range interpolation, and
interpolation truncation, we can reduce operator complexities, and
reduce the communication volume in restriction and prolongation.
These techniques however make interpolation construction more
complex and thus take longer than the RAP product, which has been
perceived as the main bottleneck in the setup phase. Therefore,
more optimization efforts are needed for interpolation construction.
Second, we observe that the accumulation of sparse vectors is a
common pattern accounting for a significant fraction of the setup
time, including interpolation construction and RAP products. It will
be interesting to see speedups of the sparse accumulation from the
upcoming AVX-512 instructions such as vcompressd. Lastly, op-
timizations like reordering and fusion require changes beyond the

scope of kernels, which can hamper the modular design of sparse
solver libraries. This calls for a sparse solver library design that
accommodates both modularity and inter-kernel optimizations, and
programming system supports such as domain specific compiler
optimizations.

Acknowledgements
The authors first would like thank Robert Falgout for the discussion that
led to this paper. We also thank Abdulrahman Manea at Stanford and Jason
Sewall at Intel for providing the reservoir simulation data used in our strong
scaling experiments. We also thank Intel Endeavor team for their quick and
competent support for the cluster.

References
[1] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Resid-

ual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM
Journal on Scientific and Statistical Computing, vol. 7, no. 3, 1986.

[2] Argonne National Laboratory, “Aurora Argonne Leadership Comput-
ing Facility,” http://aurora.alcf.anl.gov.

[3] A. Brandt, S. F. McCormick, and J. W. Ruge, “Algebraic multigrid
(AMG) for automatic multigrid solutions with application to geodetic
computations,” Report, Inst. for Computational Studies, Fort Collins,
Colo., 1982.

[4] V. E. Henson and U. M. Yang, “BoomerAMG: a Parallel Algebraic
Multigrid Solver and Preconditioner,” Applied Numerical Mathemat-
ics, vol. 41, pp. 155–177, 2000.

[5] K. Stüben, “An Introduction to Algebraic Multigrid,” in Multigrid,
2001.

[6] U. M. Yang, “Parallel algebraic multigrid methods - high performance
preconditioners,” in Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, 2006.

[7] H. D. Sterck, R. Falgout, J. Nolting, and U. M. Yang, “Distance-Two
Interpolation for Parallel Algebraic Multigrid,” Numerical Linear Al-
gebra with Applications, vol. 15, 2008.

[8] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of
Scaling Algebraic Multigrid across Modern Multicore Architectures,”
in International Symposium on Parallel and Distributed Processing
(IPDPS), 2011.

[9] M. Naumov, “AmgX: Scalability and Performance on Mas-
sively Parallel Platforms,” http://www.siam.org/meetings/ex14/
14-naumov-slides.pdf, 2014, SIAM Workshop on Exascale Applied
Mathematics Challenges and Opportunities.

[10] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T.
Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Wil-
lenbring, A. Williams, and K. S. Stanley, “An Overview of the Trilinos
Project,” ACM Transactions on Mathematical Software, vol. 31, no. 3,
2005.

[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang,
“PETSc Web page,” http://www.mcs.anl.gov/petsc, 2014. [Online].
Available: http://www.mcs.anl.gov/petsc

[12] J. D. McCalpin, “STREAM: Sustainable Memory Bandwidth in High
Performance Computers,” http://www.cs.virginia.edu/stream.

[13] K. Stüben, “A review of algebraic multigrid,” Computational and Ap-
plied Mathematics, vol. 128, 2001.

[14] U. M. Yang, “On Long Range Interpolation Operators for Aggressive
Coarsening,” Numerical Linear Algebra with Applications, vol. 17,
no. 2-3, 2010.

[15] P. Vanĕk, J. Mandel, and M. Brezina, “Algebraic Multigrid on Un-
structued Meshes,” University of Colorado at Denver, CCM Report
34, 1994.

[16] B. D. Braess, “Towards Algebraic Multigrid for Elliptic Problems of
Second Order,” Computing, vol. 55, 1995.

[17] P. Vanĕk, J. Mandel, and M. Brezina, “Algebraic Multigrid by
Smoothed Aggregation for Second and Fourth Order Elliptic Prob-
lems,” Computing, vol. 56, 1996.

[18] R. Gandham, K. Esler, and Y. Zhang, “A GPU accelerated algebraic
multigrid method,” Computers and Mathematics with Applications,
vol. 68, 2014.

[19] Y. Notay, “An aggregation-based algebraic multigrid method,” Elec-
tronic Transactions on Numerical Analysis, vol. 37, no. 6, 2010.

[20] G. Haase, M. Liebmann, C. C. Douglas, and gernot Plank, “A Paral-
lel Algebraic Multigrid Solver on Graphics Processing Units,” High
Performance Computing and Applications, 2010.

[21] M. Wagner, K. Rupp, and J. Weinbub, “A Comparison of Algebraic
Multigrid Preconditioners using Graphics Processing Units and Multi-
Core Central Processing Units,” in Society for Computer Simulation
International Symposium on High Performance Computing, 2012.

[22] N. Bell, S. Dalton, and L. N. Olson, “Exposing Fine-Grained Paral-
lelism in Algebraic Multigrid Methods,” SIAM Journal on Scientific
Computing, vol. 34, no. 4, 2012.

[23] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic Block Multi-
Color Ordering Method for Parallel Multi-Threaded Sparse Triangular
Solver in ICCG Method,” in International Symposium on Parallel and
Distributed Processing (IPDPS), 2012.

[24] E. Phillips and M. Fatica, “A CUDA implementation of the High Per-
formance Conjugate Gradient benchmark,” in International Workshop
on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems, 2014.

[25] “AmgX Reference Manual,” 2014.

[26] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid
Smoothers for Ultra-Parallel Computing,” SIAM J. on Sc. Computing,
vol. 33, 2011.

[27] F. G. Gustavson, “Two Fast Algorithms for Sparse Matrices: Multi-
plication and Permuted Transposition,” ACM Transactions on Mathe-
matical Software, vol. 4, no. 3, 1978.

[28] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Ander-
son, S. Gautam, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey,
“Parallel Efficient Sparse Matrix-Matrix Multiplication on Multicore
Platforms,” in International Supercomputing Conference (ISC), 2015.

[29] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matrices in MAT-
LAB: Design and Implementation,” SIAM Journal on MAtrix Analysis
and Application, vol. 13, no. 1, 1992.

[30] R. D. Falgout, J. E. Jones, , and U. M. Yang, “Pursuing Scalability for
hypre’s Conceptual Interfaces,” ACM Transaction on Mathematical
Software, vol. 31, no. 3, 2005.

[31] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim,
and P. Dubey, “Fast Sort on CPUs and GPUs: A Case for Bandwidth
Oblivious SIMD Sort,” in International Conference on Management
of Data (SIGMOD), 2010.

[32] J. Dongarra and M. A. Heroux, “Toward a New Metric for Ranking
High Performance Computing Systems,” Sandia National Laborato-
ries, Tech. Rep. 4744, 2013.

[33] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Col-
lection,” ACM Transactions on Mathematical Software, vol. 15, no. 1,
2011, http://www.cise.ufl.edu/research/sparse/matrices.

[34] Y. Saad, “A Flexible Inner-outer Preconditioned GMRES Algorithm,”
SIAM Journal on Scientific Computing, vol. 14, no. 2, 1993.

[35] K. Stüben, Algebraic multigrid (AMG): an introduction with applica-
tions. GMD-Forschungszentrum Informationstechnik, 1999.

[36] Lawrence Livermore National Lab, “AMG2013,” https://codesign.
llnl.gov/amg2013.php.

[37] N. Remy, A. Boucher, and J. Wu, Applied Geostatistics with SGeMS:
A User’s Guide. Cambridge University Press, 2011.

[38] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying
Synchronization for High-Performance Shared-Memory Sparse Tri-
angular Solver,” in International Supercomputing Conference (ISC),
2014.

[39] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey, “Effi-
cient Shared-Memory Implementation of High-Performance Conju-
gate Gradient Benchmark and Its Application to Unstructured Matri-
ces,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[40] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the Performance of an Algebraic Multigrid Cy-
cle on HPC Platforms,” in International Conference on Supercomput-
ing (ICS), 2011.

http://aurora.alcf.anl.gov
http://www.siam.org/meetings/ex14/14-naumov-slides.pdf
http://www.siam.org/meetings/ex14/14-naumov-slides.pdf
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.cs.virginia.edu/stream
http://www.cise.ufl.edu/research/sparse/matrices
https://codesign.llnl.gov/amg2013.php
https://codesign.llnl.gov/amg2013.php

	Introduction
	Algebraic Multigrid and Related Work
	Optimizations for Multi-Core Processors
	Setup Phase
	Triple Sparse Matrix Product
	Interpolation Construction

	Solve Phase
	Other Optimizations

	Optimizations for Multiple Nodes
	Distributed Matrix in HYPRE
	Parallelization of Column Index Renumbering
	Eliminate Unnecessary MPI Data Transfers in Interpolation Construction
	Other Optimizations

	Evaluation
	Setup
	Single-Node
	Multi-Node

	Single Node Performance and Comparison with AmgX
	Multi-Node Weak Scaling Performance
	Multi Node Strong Scaling Performance

	Conclusion and Future Work

