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ABSTRACT

Linear systems are occurring in many applications, and solving them can take a large amount of
the total simulation time. The high performance library hypre provides a variety of interfaces and
linear solvers, including various multigrid methods, that have achieved good scalability on a variety
of homogeneous parallel computer architectures. Heterogeneous architectures with nodes that have
both CPUs and accelerators provide new challenges, since they require more fine-grained parallelism
and reduced data movement between different memories on a single node as well as across nodes. We
will discuss our experiences and strategies to port hypre to heterogeneous computers with accelerators,
including the design of a new memory model, the use of abstractions, the BoxLoop macros in the
structured and semi-structured interfaces, and the restructuring of algebraic multigrid (AMG) into
modular components. We present numerical experiments comparing CPU and GPU performance for
several test problems.

1. Introduction
Linear systems occur inmany scientific applications, and

their solution can take a substantial amount of the total sim-
ulation time. The parallel software library hypre [33, 28, 25]
provides a variety of conceptual interfaces, linear solvers
and preconditioners that are designed to achieve high per-
formance. The interfaces allow users to create a linear sys-
tem in the way most convenient for them, be it via grids and
stencils, finite elements or as a linear-algebraic system. Un-
derneath these interfaces different data structures are created
that aim to take advantage of the way the problem has been
defined to achieve better performance, when possible. For
example, a system expressed via the structured (Struct) in-
terface, in terms of grids and stencils, can be solved using
a more efficient solver that takes advantage of the structure.
The semi-structured (SStruct) interface is designed to solve
mostly structured problems, coming from block-structured,
overset, or adaptive mesh refinement grids and allows the
use of additional variable types, including edge-centered,
and face-centered variables. It also provides a finite ele-
ment option. Finally, the IJ interface, which takes a linear-
algebraic system as input, gives access to more general, al-
beit more expensive solvers. The multigrid preconditioners
and solvers in hypre have shown excellent scalability on ho-
mogeneous computer architectures [7]. Heterogeneous ar-
chitectures with nodes that have both CPUs and accelerators
provide new challenges, since they requiremore fine-grained
parallelism and reduced communication and datamovement,
which are significantly more costly than computational op-
erations on these new computer architectures.
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To respond to these difficulties hypre developers reeval-
uated their software strategy and started to implement vari-
ous changes. To accommodate the fact that CPUs and GPUs
each have their own memories, a new memory model was
developed that specifies the memory in which data are al-
located. However, further changes were needed to port the
solvers in hypre to GPUs. Many hypre solvers are algebraic
multigrid methods (AMG) [14, 50, 26], which can provide
excellent numerical scalability, when they are well designed.
AMG differs from geometric multigrid in that it derives the
lower levels completely from the linear system at the finest
level, A1x = b, provided by the user. It consists of a setup
and a solve phase. During the setup phase, the variables for
level l+1 are determined by coarsening the graph ofAl, fol-
lowed by the creation of interpolation Pl, restriction Rl and
the coarse grid operator Al+1 = RlAlPl. Often Rl = P T

l .
During the solve phase, the error is smoothed with a few
sweeps of a generally simple iterative method such as Jacobi
or Gauss-Seidel, and Rl and Pl are used to move between
levels. GPUs generally achieve excellent performance on
very large problems. This naturally constitutes an issue for
multilevel methods, which, on coarser levels, have succes-
sively smaller systems that require decreasing numbers of
computational operations, but still a large amount of com-
munication. Neverthless, AMG methods are still among the
best candidates to achieve good runtimes, even on GPUs,
due to their numerical scalability and optimality.

Since there are significant differences between the data
structures used from the Struct and IJ interface, different
software strategies were developed to port the underlying
solvers to GPUs. Since GPUs favor structured operations,
hypre’s structured solvers, which are based on grids and sten-
cils, were promising candidates for good GPU performance.
They were designed with BoxLoops, macros that are used
to perform loops across the underlying data structures. This
portable design enables the addition of new options, includ-
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ing new programming models. A different strategy was re-
quired to port the unstructured AMG solver to GPUs. We
decided on a modular approach, i.e. expressing the algo-
rithms in terms of smaller reusable kernels, wherever pos-
sible. Such kernels include matrix and vector operations.
This approach reduces the amount of code that needs to be
rewritten when porting to a new architecture. The current
kernels have been written in CUDA for Nvidia GPUs, but
work is in progress to port them to other programming mod-
els, such as HIP and SYCL for AMD and Intel GPUs, using
vendor-provided conversion tools. While this approach was
fairly straightforward for the solve phase, which can com-
pletely be expressed in terms of matrix-vector operations, it
required new algorithm design for the setup phase, which
now can be expressed mostly in terms of matrix operations.

This paper describes the new memory model in Section
2. Section 3 focuses on the efforts to port the structured inter-
face and solvers to various new programming models. Sec-
tion 4 discusses the algorithms used to achieve GPU perfor-
mance in the IJ interface, including the generation of IJ ma-
trices, and various kernels and algorithms used in the setup
and solve phase ofAMG. Section 5 presents additional GPU-
enabled components as well as interfaces and solvers, not all
of which are available on GPUs yet, but are expected to be
ported soon. Section 6 contains numerical results for vari-
ous test problems obtained on a machine at LLNL with 2
IBM Power 9s and 4 Nvidia V100s per node. We conclude
with future plans in Section 7.

2. Heterogeneous Memory Management
In this section, we talk about the memory management

model for the heterogeneous CPU-GPU platform and the ex-
ecution policy based on the memory model.

2.1. Conceptual and physical memory spaces
The conceptual memory space of hypre consists of two

user-level memory locations, namely HYPRE_MEMORY_HOST and
HYPRE_MEMORY_DEVICE. The physical memory space has four
locations, i.e., hypre_MEMORY_HOST, hypre_MEMORY_HOST_PINNED,
hypre_MEMORY_DEVICE, and hypre_MEMORY_UNIFIED, which are,
respectively, CPU memory, CPU pinned memory, GPU de-
vice memory and unified memory, and not exposed to the
users. Moreover, the pinned host memory is internally used
to transfer data between the device and the host, mostly for
the MPI communications issued from the host. The map-
ping between the conceptual memory space to the physical
memory space depends on the configurations for different
architectures. In the simplest case for a CPU-only build,
both HYPRE_MEMORY_HOST and HYPRE_MEMORY_DEVICE are mapped
to hypre_MEMORY_HOST. In Table 1, we present the mappings
in three different scenarios, where “CPU-only” is the CPU-
only build, “GPU without UVM” is the GPU build without
unified memory, and “UVM” is the GPU build with unified
memory enabled.

Table 1
Mappings from the conceptual memory space to the physical
memory space in 3 different configurations of hypre.

HYPRE_MEMORY_HOST HYPRE_MEMORY_DEVICE

CPU-only hypre_MEMORY_HOST hypre_MEMORY_HOST

GPU w/o UVM hypre_MEMORY_HOST hypre_MEMORY_DEVICE

UVM hypre_MEMORY_HOST hypre_MEMORY_UNIFIED

2.2. Memory location and execution policy
For the unstructured objects such as the sparse matrices

and vectors, a memory_location member is introduced in the
class to identify the (conceptual) memory location the ob-
ject currently resides on. Therefore, appropriate host or de-
vice functions can be called based on this information of the
input object. We refer to the execution location of a func-
tion that depends on the memory location of an object as
the execution policy. Obviously, the execution policy for
hypre_MEMORY_HOST and hypre_MEMORY_DEVICE has no ambigu-
ities, whereas , since unified memory can be accessed from
both the host and device, the policy for hypre_MEMORY_UNIFIED
can be either HYPRE_EXEC_HOST or HYPRE_EXEC_DEVICE and is de-
faulted as the former one.

3. Structured Interface and Solvers
In this section, we discuss the portability strategy for the

structured interface and solvers in hypre.

3.1. Structured interface
The Struct interface in hypre is a way of describing linear

systems in terms of structured grids and stencils instead of
matrix rows and columns. Systems of this type often arise
from discretizations of partial differential equations, so the
Struct interface provides a more natural interface for these
applications. It is also a means of expressing structure in the
system that can be exploited to deliver more efficient solvers
and computational kernels. The latter is potentially of great
benefit on accelerator-based architectures like GPUs.

The grid is described via a global index space of integer
tuples in 2D as depicted in Figure 1 (1D, 3D, etc. are analo-
gous). The global indexes allow hypre to discern how data is
related spatially, and how it is distributed across the parallel
machine. The basic component of the grid is a box, a col-
lection of cell-centered indices defined by its minimum and
maximum indexes (the lower-left and upper-right corners in
the figure). Each process owns a unique subset of the grid
boxes. A vector has values associated with indexes on the
grid. A matrix has rows associated with indexes on the grid,
where nonzero entries of each row are related to “neighbor-
ing” indexes by way of a stencil. For example, the following
is a five-point stencil commonly used to discretize diffusion
equations:

⎡

⎢

⎢

⎣

(0, 1)
(−1, 0) (0, 0) (1, 0)

(0,−1)

⎤

⎥

⎥

⎦

. (1)
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(-3,2)

(6,11)

(7,3) (15,8)

Index Space

Figure 1: A two-dimensional structured grid is a union of non-
intersecting boxes defined on a global index space of integer
tuples (i, j).

With this definition of matrices and vectors, linear al-
gebra operations have regularity that can be exploited for
computational efficiency. The core kernels are defined on
boxes of data, so hypre employs a loop abstraction called a
BoxLoop. This abstraction is essentially an iterator that gen-
erates indexes into arrays of data. In hypre, it is implemented
with macros and has the following structure:

hypre_BoxLoop1Begin(ndim, loopsize,

databox, start, stride, ii);

{

yp[ii] += alpha * xp[ii];

}

hypre_BoxLoop1End(ii);

For a 2D problem, ndim is 2, loopsize is an integer array of
length 2 with the loop size in each dimension, databox is the
lower and upper corners of a box of data, start is the starting
index (in the databox) for the loop, stride is the stride, and ii

is the index into the data arrays xp and yp. There are several
BoxLoop macros in hypre. For example, the BoxLoop2macro
generates two array indexes for data with two different data-
box layouts.

On a CPU-based node, the hypre_BoxLoop1Begin macro
precomputes various quantities needed for the looping con-
struct and starts the loop. The code between the following
braces is arbitrary. The above example illustrates a scaled
vector sum or “axpy” on array data xp and yp that have the
same data-box layout. The hypre_BoxLoop1End macro incre-
ments the array index ii and closes the loop. Figure 2 shows
an example of the array indexes generated by the BoxLoop
for a given set of loop parameters.

This BoxLoop loop abstraction simplifies the process of
porting hypre’s Struct code to GPUs and enables a variety
of different approaches including: OpenMP, CUDA, RAJA,
and Kokkos. The implementation of these ports is largely re-
stricted to header file code that defines the various BoxLoop
macros. In the following sections, we will desribe the main
components of each of the ports.

(3,1)

(8,5)

(4,2)

Figure 2: Illustration of a two-dimensional BoxLoop with
loopsize = (3, 2), databox = (3, 1) × (8, 5), start = (4, 2), and
stride = (1, 2). In this example, the loop generates array in-
dexes 8, 9, 10, 20, 21, and 22, in no predefined order.

3.2. OpenMP
OpenMP versions 4.5 and later extend support to GPU-

based architectures. Prior to this, hypre used OpenMP to
provide a multi-threaded shared-memory approach for uti-
lizing on-node parallelism. The original approach placed
OpenMP pragmas prior to each BoxLoop in the C source
files. Since the syntax of these pragmas changed somewhat
for GPU-based architectures, a decision was made to require
C99 standard compilers (or later) when using OpenMP and
rework the BoxLoop macros to use the _Pragma and variadic
macro features (the equivalent __pragma feature is used for
Microsoft C/C++ compilers). This change involved touch-
ing most of the Struct code in hypre, but was fairly straight-
forward. Once in place, the port to OpenMP4.5 mainly in-
volved changing the pragma line in the BoxLoop macros.
The original CPU pragma was

_Pragma("omp parallel for ...")

The “...” part of the pragma specifies certain thread-private
variables and the parallel-for schedule, which is currently set
to schedule(static). The OpenMP4.5 pragma is

_Pragma("omp target teams distribute parallel for ...")

The “...” part of the pragma specifies various OpenMP
clauses such as is_device_ptr() to indicate pointers to mem-
ory allocated on device (e.g., the xp and yp pointers in the
above BoxLoop example).

3.3. CUDA
The CUDA implementation of the BoxLoops relies on

the lambda function features of C++11 (and later) to pack-
age the loop body into a function that can be launched as a
CUDA kernel. Because of the C++11 requirement, a sig-
nificant effort was required to modify the C code in hypre
so that it can be compiled with a C++ compiler (although
C is essentially a subset of C++, this is not strictly true).
The changes needed were straightforward, but tedious, and
affected about 300 files in the code. Here is a list of the
main changes that needed to be made: changed ‘char *’ to
‘const char *’ anywhere string literals were expected; added
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explicit cast expressions from ‘void *’ variables; added ar-
gument types to all function declarations; added ‘extern "C"’
guards around Fortran interface code and many other places;
changed certain variable names like ‘new’, ‘true’, ‘false’ that
are reserved words in C++.

A major difference in the parallel BoxLoop implementa-
tions on CPUs and GPUs are the ways to partition boxes for
different threads. In the CPU implementation, boxes are par-
titioned into segments of cells that are consecutive in mem-
ory for better cache locality, whereas in the GPU implemen-
tation, boxes are partitioned in a “cell-wise interleaved” way,
i.e., thread 1 accesses cell 1, thread 2 accesses cell 2, and
so on, so that adjacent threads can access adjacent cells in
memory to increase the DRAM bandwidth for better mem-
ory coalescing. See Figure 3 for the illustrations of these two
types of approaches for partitionings two boxes.

1 1 1111

2 2

3 3 3 3

2 2

3

1 1

322 32

1 1

3 3

22 22

33

33333

2 2 2 2 2

11111

(a) partition boxes on CPUs

32

3 1

1 2

13 3

21

32132

3 1 2 3 1

2131

21 2132

2

1

2

21 133

321

2

3

3

1

2

(b) partition boxes on GPUs

Figure 3: The partitioning of two boxes on CPUs and GPUs.
The numbers in the cells are thread indices.

3.4. RAJA
RAJA [9] is a collection of C++ software abstractions,

including looping abstractions, designed to support perfor-
mance portability across high-performance computing plat-
forms, including GPU-based systems. Like with CUDA,
the RAJA implementation of the BoxLoops also requires
C++11 (or later) and the use of lamba functions to pack-
age the loop body into a function. The lambda function is
then passed into the RAJA::forall loop execution method.

3.5. Kokkos
Kokkos [17] implements a programming model in C++

for writing performance portable applications. Similar to
RAJA, it also provides parallel looping abstractions. The
BoxLoop implementation for Kokkos in hypre is basically
the same as for RAJA, requiring C++11 and lambda func-
tions, but using the Kokkos::parallel_for looping construct
instead.

3.6. Structured solvers
The hypre library provides two structured semicoarsen-

ing multigrid solvers, SMG [15] and PFMG [5], which use
different relaxation approaches. SMGuses plane smoothing,
which leads to a very robust, but potentially expensive algo-
rithm. PFMG, on the other hand, uses pointwise smoothing,
making this method highly efficient for suitable problems.

Both methods utilize the BoxLoops in the implementation
of their setup and solve phases. This software strategy leads
to good portability and allows straightforward GPU imple-
mentation.

4. Unstructured Interface and Solvers
In this section, we discuss our software strategy and ef-

forts to enable the unstructured interface and linear algebra
kernels, preconditioners and solvers to run on GPUs.

4.1. Setup and assembly of IJ Objects
The IJ interface provides access to parallel sparse ma-

trices and vectors in hypre, which are distributed by blocks
of rows. It is expected that users will provide data in dis-
tributed form because this is the only scalable approach for
assembling matrices and vectors on thousands or millions
of processes. After an IJ matrix has been created and ini-
tialized, i.e. the matrix is initially a zero matrix, the matrix
coefficients are ready to be modified by repetitively calling
the function

HYPRE_IJMatrixSetValues(ijmatrix, nrows, ncols,

rows, cols, values);

where nrows is the number of rows to set, ncols is an array
of size nrows that contains the number of values to set in
each row. The actual global row and column indices and
values are given by rows, cols and values. One can also call
the function HYPRE_IJMatrixAddToValues, which has the same
prototype as above but adds values to the matrix instead of
setting them. Note that while AddToValues can add to values
on other processes, SetValues will only set values locally,
since it is not possible to uniquely determine the order of
setting values across processes. If SetValues is called from
process i to set a matrix coefficient on a different process j,
all occurrences of this coefficient on process i will be erased
to avoid contributing to this coefficient on process j.

The unassembled matrix coefficients are stashed in an
intermediate auxiliary object until HYPRE_IJMatrixAssemble

is called to generate the final matrix. Although the GPU
versions of the IJ routines have the same prototypes as the
CPU versions, but expect the input data to be in GPU mem-
ory, the underlying data structure and algorithms are sig-
nificantly different. In the CPU implementation, the data
structure for the auxiliary matrix is a dynamic 2-D array, i.e.,
pointers to pointers, where the matrix coefficients are stored
in separate arrays, one for each row, that are pre-allocated
with a fixed small size (say, 30), and dynamically resized
when the capacity is not enough. Since a matrix coefficient
may appear multiple times in the same or different calls of
Set/AddToValues, a search for the matrix coefficient is first
done in the corresponding row of the auxiliary matrix, and
the value is updated if it exists or a new coefficient is inserted
otherwise.

It is very challenging to have an efficient implementa-
tion on GPUs, when using 2-D arrays, especially for large
problems. This is caused not only by the large number of
dynamic allocations and reallocations but also by the large
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number of row searches. A more appropriate data structure
and algorithm is obtained by storing all matrix coefficients
across different rows in flat 1-D arrays, and postponing the
compression of the entries that have the same row and col-
umn indices in the assembly. These 1-D arrays are preallo-
cated with some arbitrary initial size, such as a small con-
stant times the number of local rows, and reallocated by a
prespecified growth factor if there is no more space. Thus,
the potential number of memory allocations should be far
less than that when using 2-D arrays. The compression in
the assembly is performed by a sort-scan-reduce approach
illustrated in Figure 4, where we consider a simple example
of assembling the upper triangular part of the global stiffness
matrix from two element matrices and the Dirichlet bound-
ary condition on the edge (2, 3) on 1 process. As shown in
Figure 4a, the row indices, column indices and numerical
values of the unassembled matrix coefficients are stored in
arrays I, J and A in the auxiliary matrix. Furthermore, a bi-
nary array S is used to distinguish the matrix coefficients ob-
tained by SetValues from those of AddToValues, with values
1 and 0 respectively. Note that we do not need to store this
information explicitly in the assembly algorithm on CPUs,
since the matrix coefficients are sequentially applied so that
the correct order of “set” and “add” is inherently guaran-
teed. The first step in the assembly is to sort the four arrays
together using (I, J) as the tuple keys, in order to bring the
coefficients at the same position of the matrix together. Note
here that a stable sorting algorithm must be chosen to main-
tain the relative order of the entries with equal keys. In the
second step, shown in Figure 4c, a segmented scan, i.e.,
a scan that is broken into distinct segments with the same
(I, J) key, is performed on S to keep the last “set” of a matrix
coefficient and discard all the previous occurrences of the
same matrix coefficient. Clearly, the scan should be exclu-
sive and performed in the reverse order (i.e., from the end to
the beginning) and the reduction operation in the scan is to
take the maximum. The meaning of binary array S has been
changed after this step, such that numerical values in A that
correspond to 1 in S need to be zeroed out, denoted by 0 as
opposed to the original zeros, whereas those corresponding
to 0 are kept unchanged. In the last step of the assembly,
a segmented reduction is performed to combine the matrix
coefficients in A that have the same (I, J) into one sum, and
S is reduced accordingly by again taking the maximum. No-
tice that the array S defines the correct modifications to the
pre-existing values in the previously assembled matrix. Af-
ter that, the auxiliary matrix is ready to be converted to the
final matrix format in hypre and then freed.

The example in Figure 4 mimics a common practice in
assembling FEM matrices, where contributions from all el-
ements are first added and those from boundary condition
are set after. The IJ interface of hypre can actually han-
dle more general usage with the same algorithm discussed
above. Consider an add-after-set situation for entry (2,2) in
Figure 5, where the values from the first two “adds” prior to
the “set” are zeroed out in the reversed-scan step, while the
value from the third “add” after the “set” can be correctly

I 0 0 0 2 2 3 0 0 0 1 1 2 0 1 2 0 2 3
J 0 3 2 2 3 3 0 1 2 1 2 2 2 2 2 3 3 3
A .5 -.5 0 .5 -.5 1 .5 -.5 0 1 -.5 .5 0 0 1 0 0 1
S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

(a) coefficients of element matrices and boundary conditions

I 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 3 3
J 0 0 1 2 2 2 3 3 1 2 2 2 2 2 3 3 3 3
A .5 .5 -.5 0 0 0 -.5 0 1 -.5 0 .5 .5 1 -.5 0 1 1
S 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1

(b) sort by key

I 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 3 3
J 0 0 1 2 2 2 3 3 1 2 2 2 2 2 3 3 3 3
A .5 .5 -.5 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
S 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0

(c) reversed exclusive scan by key

@
@
@

@@t t
t t

3 2

0 1 I 0 0 0 0 1 1 2 2 3
J 0 1 2 3 1 2 2 3 3
A 1 -.5 0 0 1 0 1 0 1
S 0 0 1 1 0 1 1 1 1

(d) reduce by key

Figure 4: IJ matrix assembly for FEM stiffness matrix

I 2 2 2 2
J 2 2 2 2
A .5 .5 1 .5
S 0 0 1 0

(a) sort-by-key

I 2 2 2 2
J 2 2 2 2
A 0 0 1 .5
S 1 1 0 0

(b) reversed scan

I 2
J 2
A 1.5
S 1

(c) reduce

Figure 5: Assemble entry (2,2) with add-after-set values

included in the final reduction.
When adding coefficients to other processes, a separate

auxiliary matrix is used to store the off-process unassembled
coefficients. At the assembly stage, this auxiliary matrix is
first compressed by the same aforementioned steps with a
slight difference in the scan-step where the segmented scan
should be inclusive to invalidate the set to a value belonging
to a different process, then transmitted to other processes,
and lastly compressed again after being combined with the
local auxiliary matrices on the remote processes.

The algorithm used for assembling IJ vectors on GPUs
is very similar to the one for IJ matrices and is much sim-
pler, so we omit the details. The parallel sort, scan, and re-
duction primitives on GPUs are available from the Thrust
library [13].

4.2. Sparse linear algebra kernels
Exploiting optimized computational kernels is a com-

mon approach to improve performance and increase porta-
bility. In this section, we discuss several sparse linear alge-
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bra kernels used in the AMG setup and solve phases.
The sparse matrix-vector product (SpMV) is generally

the most frequently used kernel in the AMG solve phase. It
is applied with the local matrices of coefficient matrixAl, in-
terpolation matrix Pl, and restriction matrix Rl at each level
l. A great amount of work has been done in the literature
to increase the performance of SpMV on GPUs, see, e.g.,
[12, 41, 40, 18, 4, 8] among many others, using different
strategies such as designing advanced sparse matrix formats
that are more suitable to GPUs, automated performance tun-
ing, improving the load balance, and optimizing the memory
bandwidth. In hypre, we use the SpMV kernel in the CSR
format from the cuSPARSE library. The distributed SpMV
with the transpose of a matrix can be computed as the sparse
matrix-transpose-vector products (SpMTV). However, since
the performance of SpMTV in the CSR format on GPUs is
significantly slower than that of SpMV, it can be more ef-
ficient to explicitly compute and store the transpose of the
matrix, avoid SpMTV and perform SpMV instead.

The performance of a sparse triangular solve (SpTrSV)
is usually far lower compared with SpMV due to its inher-
ently sequential nature. This kernel is required in AMG by
theGauss-Seidel relaxation and incomplete LU (ILU) factor-
ization preconditioners. The parallelism in SpTrSV can be
discovered by analyzing the directed acyclic graph (DAG)
of the triangular matrix and carefully scheduling the order
of the nodes to solve. The level-scheduling algorithm was
introduced by Anderson and Saad [1], and later by Saltz in
[49]. Theworks in [47, 35]might be the first efforts onGPUs
and similar approaches were later adopted in [51, 48]. The
element-based scheduling was introduced in [29] for shared-
memory machines, and recently implemented on GPUs [38,
43, 37]. SpTrSV kernels based on these two scheduling algo-
rithms are available in the cuSPARSE library. hypre can use
the cuSPARSE kernels and, alternatively, provides its own
implementation of SpTrSV. It was shown in [37] that hypre’s
implementation can perform better than the cuSPARSE ker-
nels.

The sparse matrix-matrix multiplication (SpGEMM) of-
ten represents the most challenging computational kernel in
the AMG setup. It is required to construct coarse-grid opera-
tors in the Galerkin product in the form ofRAP , to generate
matrix-matrix based interpolation operators, and to compute
S2, described in Section 4.3. First consider the multiplica-
tion of distributed sparse matrices Q = AP , which can be
decomposed into four local SpGEMMs, i.e.,

Qdiag = AdiagPdiag + AoffdP
ext
diag,

Qoffd = AdiagPoffd + AoffdP
ext
offd,

(2)

where ‘diag’ and ‘offd’ indicate the on-process and the off-
process blocks of the local matrix respectively, and P ext is
the external rows owned by other processes that are required
in the multiplication. However, a more efficient way is to
reorganize (2) into one SpGEMM,

[

Qdiag Qoffd
]

=
[

Adiag Aoffd
]

[

Pdiag Poffd
P ext
diag P ext

offd

]

. (3)

Similarly, for RQ where R = P T, the local multiplication is
given by

[

Rdiag
Roffd

]

[

Qdiag Qoffd
]

, (4)

whereRdiag andRoffd are stored as transposes and should be
saved for the solve phase. Moreover, the second block row of
the product in (4) needs to be transmitted to the neighboring
processes and combined with the local result (which is the
first block row) on those processes.

Efficient algorithms for SpGEMM and their implemen-
tations on GPUs are typically complicated. In a row-based
format such as CSR, the objective is essentially to find ef-
ficient approaches to accumulate sparse rows, which are of-
ten referred to as the sparse accumulators. Existing algo-
rithms include expansion-sorting-compression (ESC) meth-
ods [44, 21], row-merging methods [39, 30, 11], heap-sort-
based methods [39], and hash-based methods [3, 24, 46]. A
state-of-the-art SpGEMM kernel in the CSR format is avail-
able from the cuSPARSE library, while the implementation
in hypre based on [24] is generally found to have superior
performance. The hash-table based algorithm in hypre for
multiplying two general sparse matrices Q = AP consists
of the following 3 steps:

1. Stochastic estimation: estimate the number of nonze-
ros in each row of Q. This step is for allocating the
hash tables of reasonable sizes used in step 2;

2. Symbolic multiplication: obtain the exact number of
nonzeros in each row ofQ or a tight upper bound. This
step is for allocating adequate memory for Q that is
computed in step 3;

3. Numeric multiplication: compute the sparsity pattern
and the numerical values of Q.

In the first step, the stochastic reachability-set algorithm by
Cohen [19] is used to estimate the structures of matrix prod-
ucts. It represents the product of sparse matrices as a net-
work of layered bipartite graphs, and the desired estimates
can be obtained as the output from the network with random
samplings. This algorithm is efficient, in linear time in the
number of nonzeros of the input matrices, and the row es-
timations are totally independent, which makes it appealing
for GPUs. In the multiplication steps 2 and 3, a hash table
is used for each row of the product to accumulate the sparse
rows of P . The procedures in these two steps are essentially
the same. In step 2, the goal is to only count the number of
nonzeros, while the memory has not yet been allocated for
Q. In step 3, the actual pattern is determined and the numer-
ical values are accumulated.

To represent the hash table, we use arrays, or direct ad-
dress tables, where the keys and data are stored separately.
For the sparse row accumulator, the key is the column index
and the data is the matrix value. The accumulated matrix co-
efficients are stored in the hash table, i.e., open addressing,
where hash collisions are resolved by probings [20]. The
CUDA implementation of the hash-search-insert operation
is shown in Figure 6, where HashSize is the capacity of the
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1 template <HYPRE_Int ProbType >

2 static __device__ __forceinline__ HYPRE_Int

3 hash_search_insert(HYPRE_Int HashSize ,

4 volatile HYPRE_Int *HashKeys ,

5 volatile HYPRE_Complex *HashVals ,

6 HYPRE_Int key ,

7 HYPRE_Complex val ,

8 HYPRE_Int &count) {

9 for (HYPRE_Int i = 0; i < HashSize; i++) {

10 HYPRE_Int j, k;

11 j = HashFunc <ProbType >(HashSize , key , i);

12 k = atomicCAS (( HYPRE_Int *)(HashKeys+j), -1, key);

13 if (k == -1 || k == key) {

14 /* slot is empty or has 'key ', update value */

15 if (k == -1) { count ++; }

16 atomicAdd (( HYPRE_Complex *)(HashVals+j), val);

17 return j;

18 }

19 }

20 return -1;

21 }

Figure 6: Parallel Hash-Search-and-Insert operation in CUDA

hash table represented by HashKeys and HashVals, tuple (key,
val) is a new entry to insert, and count keeps the number
of elements in the hash table. The values of HashKeys and
HashVals are assumed to be initialized as -1 and 0, respec-
tively. The function returns the slot index j where key was
found or where (key, val) was inserted, or returns -1 if no
slot was found, i.e., the hash table was full. At each step, a
probed location is generated in the probe sequence which is
determined by the hash function and the probing type. The
atomic compare-and-swap function, atomicCAS in CUDA, is
used to find either an empty slot, which means key is a new
entry, or the slot that has the same key in the hash table.
When such a slot can be found, the corresponding value in
HashVals is modified by val using the atomic add function.
The purpose of using the atomic functions is to allow simul-
taneous operations to the same hash table issued by different
threads. Once all the matrix coefficients from different rows
of P have been inserted, a final row of Q is readily avail-
able from the hash table. Furthermore, two hash tables are
maintained, one is on the faster shared memory and the other
is on the global memory. The global-memory hash table is
needed when the shared-memory one overflows.

Finally, the overall SpGEMM algorithm is to indepen-
dently compute the rows in parallel, where the hash table op-
erations for each row are collectively performed by a warp of
threads. A post-processing step might be needed to remove
the extra spaces left in the rows where step 2 of the algorithm
overestimates the number of nonzeros.

4.3. Algebraic multigrid
Algebraic multigrid consists of a setup and a solve phase.

We will focus mostly on the setup phase here, since its port
to GPUs is significantly more complex than that of the solve
phase, which will be briefly discussed at the end of the sec-
tion.

The AMG setup phase has the following 4 main steps:

1. Construct strength of connection (SoC) matrices;
2. Use a coarsening algorithm to divide the variables into

coarse and fine variables;
3. Build the interpolation and restriction operators for

transferring data between the coarse and fine levels;
4. Generate the coarse-level operator via a Galerkin or

triple-matrix product.

Our approach to GPU computing is to try to break down
and reformulate algorithms into modules each of which can
be executed by a call to one of the GPU kernels developed in
hypre or available from various Nvidia GPU libraries such as
Thrust, cuSPARSE and cuRAND. By relying on these ker-
nels, one can completely avoid writing new GPU kernels for
these algorithms.

For cases in which no suitable existing kernel is available
and sufficient parallelism exists, good performance can be
obtained by writing GPU kernels that are parallel by warps
instead of by threads. A warp is a group of threads that are
executed together on the GPU processing unit, essentially in
SIMD mode. The warp size on Nvidia GPUs is currently 32
threads. Nvidia GPUs provide warp shuffle functions that
permit very efficient reductions and sharing of data within a
warp.

Construct SoC matrix. As an illustration, consider com-
puting the SoC matrix, S, defined by matrix elements aij of
A and assuming aii > 0

sij =

{

1 aij < �min
k≠i

aik

0 otherwise
,

where 0 < � < 1 is a given constant. As a first stepmink≠iaik
is computed for each row i, then the elements of A that sat-
isfy aij < �mink≠i aik are flagged. Algorithm 1 shows a
straightforward way to compute sij . In this algorithm, the
arrays of the CSR representation of a sparse matrix A are
denoted by Ai, Aj, and Ad, where Ai[i] points to the first el-
ement of row i in the array of column indices Aj, and where
Ad is the data array.

The algorithm copies the column indices in array Aj that
are strong connections to Sj. The elements of Sj can be ini-
tialized to -1. A postprocessing step can be used to remove
those elements that were not overwritten by the indices of
Aj indices. In principle, Algorithm 1 could be ported to
GPUs by removing the outermost for-loop, and letting i be
the thread rank. This loop-oriented approach to GPU porting
is reasonable for some applications, e.g., partial differential
equation (PDE) solvers where a fixed stencil is applied to
an array. The approach would, however, face performance
problems if applied to Algorithm 1. First, because there is
no sharing of data between the rows, cache utilization would
be very poor, and secondly, conditional statements in rows
potentially cause divergent execution paths between threads.

A more efficient, warp based, algorithm is outlined in
Algorithm 2, where i is set to the warp rank, and t is the
thread rank within the warp (0 ≤ t < 32). Algorithm 2 pro-
cesses each row independently of other rows, and the threads
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Algorithm 1 Strength matrix on CPU
for i:=1 to nrows do
m := maxval
for k := Ai[i] to Ai[i+1]−1 do
m := min(m,Ad[k])

endfor
for k := Ai[i] to Ai[i+1]−1 do

if Ad[k] < �m then
Sj[k] := Aj[k]

endif
endfor

endfor

within the warp will access elements that are consecutive in
memory, leading to better cache utilization.

Algorithm 2 Strength matrix on GPU
i := my_warp_id
t := my_thread_id
m := maxval
for k := Ai[i]+t, k := k+32 to Ai[i+1]−1 do
m := min(m,Ad[k])

endfor
m := allreduce_warp(m)
for k := Ai[i]+t, k := k+32 to Ai[i+1]−1 do

if Ad[k] < �m then
Sj[k] := Aj[k]

endif
endfor

PMIS coarsening. While there are various coarsening al-
gorithms implemented in hypre on CPUs, it currently pro-
vides only one GPU-enabled coarsening, the parallel maxi-
mal independent set (PMIS) coarsening, which is based on
the highly parallel Luby’s algorithm [42] for finding max-
imal independent sets with a few small modifications. For
further details on PMIS, see [23]. The random numbers used
in PMIS are generated on GPUs using the cuRAND library.

Interpolation operators. Implementation of direct inter-
polation [50] on GPUs is straightforward, since the interpo-
latory set of each F -point i is located in the i-th row of the
SoC matrix, and the interpolation formula is simple so that
the weights can be computed locally without communica-
tion. However, direct interpolation generally leads to infe-
rior convergence. To achieve good convergence one needs
to combine PMIS coarsening with a distance-two interpola-
tion formula, such as the extended and extended+i interpo-
lation operators [22]. Their implementation is much more
complicated, since they involve distance-2 neighbors and the
sparse pattern of P needs to be determined dynamically. The
CPU implementation of these algorithms in hypre is not suit-
able for GPUs. To overcome this obstacle, we developed a
new class of interpolation operators based on matrix-matrix
products with submatrices ofA that include only strong con-
nections aij , i.e. aij that correspond to nonzero elements

sij in S. The new interpolation operators, referred to as
MM-ext, MM-ext+i, and MM-ext+e, are used in hypre’s
GPU implementation. Most of the computational work to
construct the interpolation operators is done efficiently by
hypre’s GPU-optimized SpGEMM routine. See [36] for de-
tails on the MM interpolation operators. It turns out that
these newMM interpolation operators also lead to improved
times when implemented on CPUs compared to extended+i
interpolation, as demonstrated in one of our experiments in
Section 6.

Aggressive coarsening. The generation of the coarse grid
operator in AMG can lead to large memory and computa-
tional complexities. Often, this can be mitigated by coars-
ening more aggressively. Two different aggressive coarsen-
ing strategies are provided in hypre, A1- and A2-coarsening.
The algorithm implemented follows the description in [50]
by Stüben, where the standard SoC matrix, S, is first com-
puted. A coarsening algorithm using S divides the nodes
into coarse and fine points, C and F . Coarsening is then
applied a second time, but now only to the set of C-points,
resulting in a smaller set of final C-points.

The point i is strongly connected to j with a path of
length two if there exists a k (k ≠ i, j) such that i is strongly
connected to k and k is strongly connected to j. The strength
matrix for A1-coarsening has non-zero elements s(A1)ij = 1 if
i is strongly connected to j with one or more paths of length
one or two. For A2-coarsening, the non-zero elements of the
strength matrix, s(A2)ij = 1, if i is strongly connected to j with
at least two paths of length one or two. The (i, j) element of
the squared strength matrix, i.e., (S2)ij =

∑n
k=1 sikskj , is

equal to the number of paths of length two from i to j (for
i ≠ j). Hence, the number of paths of length two or length
one from i to j is given by the i, j elements of

S(A) = S2 + S.

Because the second coarsening phase is only applied to C
points, only the sub-block S(A)

CC is needed. hypre computes
the sub-block using the block form

S =
(

SFF SFC
SCF SCC

)

,

to rewrite

S(A)
CC = ((S + I)S)CC =

(

SCF SCC + ICC
)

(

SFC
SCC

)

.

The computation is done by the following three steps

1. Extract submatrices

S1 = (SCF SCC ) and S2 =
(

SFC
SCC

)

.

2. Add the identity (0 I) to S1.
3. Apply the SpGEMM kernel to compute S1S2.
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Steps 1 and 2 are relatively inexpensive. The main part of
the execution time is once again spent in the sparse matrix-
matrix multiplication in step 3.

The strength matrix for A1-coarsening is obtained by
setting all non-zero off-diagonal elements in S(A)

CC to 1 and
the diagonal elements to 0. Similarly, the strength matrix
for A2-coarsening is obtained by setting all off-diagonal el-
ements of S(A)

CC that are larger than 1 to 1, while eliminating
all other elements.

Two-stage interpolation. Aggressive coarsening usually
needs to be combined with a long distance interpolation op-
erator, such as two-stage interpolation [53]. The GPU ver-
sion of hypre provides two-stage MM-ext and MM-ext+e
interpolation, which use the MM-ext and MM-ext+e inter-
polation operators mentioned above in both stages of the al-
gorithms. These operators are also formulated as matrix-
matrix products of smaller submatrices, which can be com-
puted efficiently on GPUs.

Galerkin products. Galerkin products for coarse-level op-
erators are computed in two multiplications as R(AP ) on
GPUs. The required SpGEMM kernels have been discussed
in Section 4.2. The local matrix concatenation, splitting and
merging operations as in (3) and (4) are implemented using
the parallel primitives in the Thrust library.

AMG solve on GPUs. Porting the AMG solve phase to
GPUs is relatively easier than porting the AMG setup phase,
since themain computations can be performed by sparsema-
trix and vector kernels, such as SpMVs, vector AXPYs and
inner products. SpMVs with the interpolation operators Pl
are used tomove from a coarser level to a finer level, whereas
SpMVs with the saved transpose of Rl are used to move to
a lower level. Various popular AMG smoothers also consist
mainly of SpMVs, which makes them suitable for GPU im-
plementation. Those include l1-Jacobi, weighted Jacobi and
polynomial smoothers [6], which are all available in hypre’s
GPU implementation.

4.4. Parallel ILU preconditioners
The parallel ILU preconditioners in hypre have also been

enabled to run on GPUs. There are two types of parallel ILU
preconditioners. The first one uses a block Jacobi approach,
where the local diagonal block matrix on each process is fac-
tored by ILU(0) and the preconditioner is applied by solving
the triangular systems in parallel. The ILU(0) factorizations
are computed on GPUs using a routine from the cuSPARSE
library, and the triangular systems are solved with the Sp-
TrSV kernel. The second preconditioner uses a two-level
approach that exploits domain decomposition (DD). The so-
lution at the fine-level points that correspond to the decou-
pled interior points from DD is obtained using local ILU(0),
whereas the solution at the coarse-level points, the domain
interface, is obtained via the global Schur complement sys-
tem. Several efficient approaches were proposed in [52] to
iteratively solve the coarse-level system with Krylov sub-
space methods on GPUs, where the coarse-level operator is

not formed explicitly and the main computations in the it-
erations can be performed in the form of SpMV with local
matrix blocks and SpTrSV with the local ILU factors.

5. Additional Interfaces and Solvers
In this section we present additional interfaces, precon-

ditioners and solvers in hypre that have either been ported to
GPUs or will be targeted soon.

5.1. The semi-structured interface
The semi-structured or SStruct interface [27, 25] is built

on top of the Struct and the IJ interface. It is designed for
problems that are mostly structured, such as block struc-
tured, structured adaptive mesh refinement grids, or over-
set grids. It also has a finite element option. The interface
provides access to more general PDEs than the structured in-
terface, such as systems of PDEs as well as problems using
different types of variables, including cell-centered, edge-
centered, face-centered or nodal variables. The underlying
semi-structured matrix and vector data structures consist of
a structured and a generally much smaller unstructured part.
Since the interface builds on both the Struct and the IJ in-
terfaces, a large part of this GPU port can leverage the GPU
implementation work already done on those components.

The SStruct interface provides access to semi-structured
and unstructured solvers. Currently, the only AMG solver
that is available in the interface is BoomerAMG,which inter-
nally converts structured parts to an unstructured represen-
tation and thus is unable to take advantage of the structure.
However, we are developing a new semi-structured algebraic
multigrid solver that is expected to be more suitable for GPU
implementation.

5.2. Krylov solvers
The hypre library provides several Krylov solvers, which

are implemented in a generic form, so they can be used with
structured, semi-structured and unstructured matrices, vec-
tors, and preconditioners. These methods include the conju-
gate gradient (CG)method, the generalizedminimal residual
(GMRES) method, and the biconjugate gradient stabilized
(BiCGSTAB) method. These algorithms consist mostly of
simple matrix and vector operations, such as inner products,
AXPYs and SpMVs, which have been ported to GPUs. Con-
sequently, these solvers are fully GPU-enabled when used
without preconditioning or with a GPU-enabled precondi-
tioner.

5.3. Maxwell and H(div) solvers
The Auxiliary-space Maxwell Solver (AMS) [34] is a

scalable parallel unstructured solver for second order definite
and semi-definite Maxwell problems discretized with edge
finite elements. Such problems occur in various physics ap-
plications, such as electromagnetic simulations. Internally,
AMS uses hypre’s unstructured AMG solver, BoomerAMG.
The Auxiliary-space Divergence Solver (ADS) is a parallel
unstructured solver similar to AMS, but is targetingH(div)
instead ofH(curl) problems. Its usage and options are very
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similar to those of AMS, and in general the relationship be-
tween ADS and AMS is analogous to that between AMS and
AMG. The dependence of these solvers on AMG has facili-
tated their port to GPUs, since we were able to take advan-
tage of the optimizations in AMG.

5.4. Multigrid reduction
Multigrid reduction (MGR) [16] is a parallel multigrid

reduction solver and preconditioner designed to take advan-
tage of user-provided information to solve systems of equa-
tions with multiple variable types. It uses two-stage precon-
ditioner strategies and other reduction techniques in a stan-
dard multigrid framework. It accepts information about the
variables in block form from the user and uses it to define
the appropriate splitting into coarse and fine points for the
multigrid scheme. The linear system solve proceeds with
a relaxation solve on the fine points, followed by a coarse
grid correction. The coarse grid solve is handled by scalar
AMG (BoomerAMG). MGR provides users with more con-
trol over the coarsening process, and can potentially be a
starting point for designing multigrid-based physics-based
preconditioners. Here also, use of the GPU implementation
of AMG will be advantageous.

5.5. pAIR method
The parallel approximate ideal restriction (pAIR) algo-

rithm [31] is an algebraic multigrid method that was devel-
oped for highly nonsymmetric matrices, using a special re-
striction operator and a very lightweight interpolation oper-
ator, and has shown to be effective for advection-dominated
problems such as the linear transport problems. It can be
used as a special option in BoomerAMG. This dependence
will enable the use of some GPU optimizations available in
AMG when porting the algorithm to GPUs.

6. Numerical Results
In this section, we present various numerical results for

different multigrid solvers, comparing CPU and GPU re-
sults. The experiments were run on up to 16 nodes of a het-
erogeneous computer at Lawrence Livermore National Lab-
oratory with 4 Nvidia V100 GPUs and 2 IBM Power 9 CPUs
per node. We used hypre version 2.22.1, CUDA 10.1.243,
the IBM XL C/C++ compiler V16.1.1, and Spectrum MPI
Release xl-2021.03.11. We configured the CPU version us-
ing --with-openmp --enable-hopscotch. The latter option pro-
vides improved OpenMP optimizations in the BoomerAMG
setup phase. To achieve better performance in the Boomer-
AMG setup phase on GPUs, it is recommended to use mem-
ory pools for GPU memory. There are two options: adding
--enable-device-memory-pool to the configure line will use a
tool for Nvidia GPUs that is included with hypre. Another
option that can lead to additional improvements is to install
the memorymanagement tool Umpire [10] or use an existing
installation of it and enable it in hypre. We installed Um-
pire 5.0.1 for the runs using AMG-PCG presented in Fig-
ures 7 and 8. For the GPU runs (denoted ‘GPU’) we used
4 GPUs per node, and for the CPU runs we used either 40

Table 2
Speedups for GPU runs of PFMG-PCG over CPU runs for the
Laplace problem on an n × n × n grid

Speedup GPU/CPU Speedup GPU/CPU40
n Total Setup Solve Total Setup Solve
200 0.5 0.7 0.5 0.3 0.5 0.4
400 1.0 0.8 1.1 0.8 0.6 1.0
600 2.3 1.0 2.8 2.1 1.0 2.5
800 4.9 1.1 5.9 4.3 1.3 5.1

MPI tasks per node (denoted ‘CPU40’) or 4 MPI tasks with
10 OpenMP threads each (denoted ‘CPU’).

We first investigated the performance of the structured
solver PFMG [5] used as a preconditioner to conjugate gra-
dient when applied to a 3-dimensional 7-point Laplace prob-
lem on an n× n× n grid. We used 16 nodes, i.e. 64 (or 640)
MPI processes, and varied n from 200, leading to a prob-
lem size of 500,000 grid points per node, to 800, a problem
sizes of 32 million points per node. PFMG uses semicoars-
ening, i.e., the problem size is reduced by a factor of two
for each level. Consequently, there are 22 multigrid levels
for the smallest problem and 28 for the largest problem. We
used the fastest version of PFMG for this problem, which
enables the non-Galerkin version of PFMG and reduces the
number of relaxation steps by skipping levels for relaxation
in the solve phase. We also tested the default version, which
achieved comparable speedups between CPU and GPU ver-
sions, but is not presented here to save space. The top graph
in Figure 7 shows the runtimes, including setup, solve and
total times. The results show that total times of CPU and
GPU runs are about equal for n = 400, whereas the CPU40
runs are still slightly faster. For smaller n, all CPU runs are
faster, and the GPU runs are faster when n > 400. The setup
times for PFMG are slower on the GPU up to n = 600, how-
ever they are overall very small and insignificant compared
to the total time. Table 2 presents speedups for setup, solve
and total times for GPU over CPU and CPU40 runs. Us-
ing 40 MPI tasks per node vs 4 MPI tasks with 10 OpenMP
threads leads to faster solve times.

We investigated the performance of BoomerAMG with
PCG [32] for the same problem and present the results in
the bottom of Figure 7. Here, we used PMIS coarsening,
aggressive coarsening on the first level and MM-ext+i inter-
polation [36] for GPU and ext+i interpolation for CPU on
all lower levels. Since aggressive coarsening requires pro-
longation operators with a longer range, we used multipass
interpolation for the CPU version, which leads to the overall
fastest CPU times for this problem. For the GPU version,
we used two-stage MM-ext+e interpolation with truncation
to 2 elements per row for the interpolation matrices in stage
one and two, P1 and P2, and truncation to 4 elements for
the final interpolation matrix P = P1P2 [53, 36], since we
currently do not have a GPU implementation of multipass in-
terpolation. The results show that AMG-PCG takes overall
much longer than PFMG-PCG as expected. The total GPU
times are smaller than the CPU times for n > 300. The
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Figure 7: Solving a 7-point 3-D Laplace problem on a grid of
size n×n×n using PFMG-PCG (top) and AMG-PCG (bottom)
on 16 nodes.

Table 3
Speedups for GPU runs of AMG-PCG over CPU runs for the
Laplace problem on an n × n × n grid

Speedup GPU/CPU Speedup GPU/CPU40
n Total Setup Solve Total Setup Solve
200 0.4 0.5 0.4 0.4 0.5 0.4
300 1.0 0.7 1.4 0.8 0.7 1.0
400 1.6 1.1 2.2 1.3 0.9 1.8
500 2.5 1.9 3.3 2.0 1.4 2.8
600 3.2 2.4 4.4 2.6 1.6 4.0
800 3.9 2.3 7.1 3.4 1.5 7.2

speedups are presented in Table 3. AMG is coarsened to
a system smaller than 9, which is then solved by Gaussian
elimination. It generates about 8 to 10 levels for the prob-
lems considered here. Using 40 MPI tasks per node versus
4 MPI tasks with 10 OpenMP threads leads to better times,
particularly for the setup phase.

Since the Laplace problem considered uses a very sparse
matrix with only 7 elements per row and GPUs generally
perform better on denser matrices, we present results for a
diffusion problem with a 27-point stencil in Figure 8. For
this problem, we used MM-ext+i interpolation with trunca-
tion to 4 elements per row for both CPU and GPU versions
and a Jacobi smoother with a weight of 0.85. GPU times are
better than CPU times for n > 200, and larger speedups than
in the case of the 7-point matrix are achieved for setup, solve
and total times, see Table 4. Here, 8 to 10 multigrid levels

Table 4
Speedups for GPU runs of AMG-PCG over CPU runs for the
27pt diffusion problem on an n × n × n grid

Speedup GPU/CPU Speedup GPU/CPU40
n Total Setup Solve Total Setup Solve
200 0.8 0.9 0.7 0.8 0.9 0.7
300 1.9 1.7 2.2 1.8 1.7 1.8
400 3.1 2.7 3.8 2.9 2.5 3.6
500 4.3 3.9 5.1 4.0 3.7 4.6
600 4.4 3.6 6.5 4.1 3.2 6.1
800 4.6 3.5 7.7 4.4 3.3 7.5

are generated.

Figure 8: Solving a 27-point 3-D diffusion problem on a grid of
size n × n × n using AMG-PCG using 16 nodes (64 MPI tasks)
.

Figure 9 shows timings for the main components of the
AMG setup phase on the individual levels for two 27-point
diffusion problems, a large problem of size 64 million and
a small problem with 1 million points, using 8 GPUs on
2 nodes. The results show that for this problem, on each
level, most of the time is spent in computing the interpo-
lation, followed by the evaluation of the Galerkin product.
For the large problem, most of the time is spent on the finest
level, and the time on the coarser levels becomes insignif-
icant, whereas for the small problem timings on the coarse
levels are significant. Note that an investigation of the setup
phase for the Laplace problem using aggressive coarsening
on the finest level would look similar, even though, on the
GPU, applying MM-ext+i interpolation to a 7-point matrix
is much faster than to a 27-point matrix and requires less
time than the Galerkin product, however the evaluation of
the long range two-stage interpolation is expensive.

Finally, we present a weak scaling study of an unstruc-
tured problemwhich is posed on a crooked pipe as illustrated
in Figure 10. The systems are generated with the finite ele-
ment discretization libraryMFEM [2, 45] using unstructured
hexahedral finite elements and have the following numbers
of grid points: 966,609; 7,544,257; 59,604,993. The ma-
trices have on average 27 nonzeroes per row. This prob-
lem is very hard to solve for AMG, since a dense layer of
highly stretched elements has been added to the neighbor-
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Figure 9: Timings per multigrid levels for setup phase compo-
nents (creation of the strength matrix, coarsening, generation
of the interpolation and the Galerkin product) for a large prob-
lem (top) and a small problem (bottom). The y-axis shows ex-
ecution time in seconds, and the x-axis shows multigrid levels,
with 0 denoting the finest level.

Figure 10: Mesh for the crooked pipe problem.

hood of the material interface as illustrated on the right in
Figure 10. It requires many iterations. We used MM-ext+i
interpolation for the comparison of both CPU and GPU ver-
sions. Here, we used the memory pool routines provided
with hypre. We also added CPU results using ext+i inter-
polation [22] to show that designing a more GPU-friendly
method can also lead to improved performance on CPUs.
The speedup numbers recorded in Figure 11 are however
computed using the CPU times generated with MM-ext+i
interpolation. Here we used two sweeps of l1-Jacobi as a
smoother. We present comparisons for both a CPU version
using 4 MPI tasks per node with 10 OpenMP threads in the
upper graph in Figure 11 and a CPU version using flat MPI,
i.e., 10 MPI tasks compared to use of one GPU. We achieve

the highest speedup for the case with just one MPI task,
where we have no communication between MPI processes.
Overall speedups increase slightly from 8 to 64MPI tasks for
the OpenMPCPU version, however decrease for the flatMPI
version. Note that the use of the new MM-ext+i interpola-
tion does not only improve setup times but also reduces the
number of iterations by about 10 to 15 percent for this prob-
lem. For further comparisons of convergence and CPU per-
formance for MM-ext+i and ext+i interpolation, see [36].

Figure 11: Weak scaling study for a problem on the mesh
shown in Figure 10 using 16 nodes comparing CPU and
GPU runs using MM-ext+i interpolation for ‘CPU’, ‘GPU’ and
‘Speedup’. For the ‘CPU-old’ results, extended+i interpola-
tion was used. In the upper figure, 10 OpenMP threads per
MPI task were used for the CPU runs, whereas the lower figure
shows flat MPI CPU results, i.e. 10 MPI tasks for the first run,
80 for the second and 640 for the last run.

7. Conclusion
We presented our strategies and efforts to port hypre’s

structured and unstructured interfaces and multigrid solvers
to GPUs. This included the introduction of a new mem-
ory model, our efforts to add new programming models to
the hypre BoxLoop macros and the modularization of the
unstructured multigrid solver BoomerAMG. We described
several of our GPU kernels, which included matrix-vector
and matrix-matrix operations. We also presented additional
GPU-enabled components in hypre, including ILU precondi-
tioners and Krylov methods, solvers for Maxwell and H(div)
problems, as well as other solvers and interfaces not fully
ported to GPUs yet. We showed numerical experiments that
showed speedups for large problems. However, small prob-
lems can generally be solved faster on CPUs.
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While we made good progress in porting hypre to GPUs,
we are far from being finished. In order to further improve
the performance on GPUs, we will add multipass interpo-
lation operators based on matrix operations and additional
smoothers, including polynomial smoothers. We will also
focus on GPU implementations of the SStruct interface and
specialized solvers in hypre, such as pAIR and MGR. Fi-
nally, we will port GPU-enabled portions in hypre to addi-
tional heterogeneous architectures, includingAMD and Intel
GPUs, by converting CUDA routines to HIP andDPC++via
vendor tools and adding performance improvements based
on profiling.
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