本仓库是论文《Real-time Bidding Strategy in Display Advertising: An Empirical Analysis》的代码。
我们使用基准数据集iPinYou
。数据下载以及标准化请参见 make-ipinyou-data 。
数据标准化后,将每个广告活动(如 1458
)的 train.log.txt
和 text.log.txt
文件复制到 RLBid_EA/data/ipinyou/1458
以便进一步使用。
在训练出价策略前,首先需预测每个广告曝光的点击率。我们在 RLBid_EA/ctr/models
提供了4个数据集的FM预训练模型参数,你可以配合 RLBid_EA/ctr/generate_pctr.py
使用。
你当然也能够自己训练一个CTR预测器。RLBid_EA/ctr/model.py
实现了9个经典的点击率预测模型。
模型 | 论文 | 链接 |
---|---|---|
LR | Predicting clicks: estimating the click-through rate for new ads | [paper] |
FM | Factorization machines | [paper] |
FFM | Field-aware factorization machines for CTR prediction | [paper] |
W&D | Wide & deep learning for recommender systems | [paper] |
PNN | Product-based neural networks for user response prediction | [paper] |
DeepFM | DeepFM: a factorization-machine based neural network for CTR prediction | [paper] |
FNN | Deep learning over multi-field categorical data | [paper] |
DCN | Deep & cross network for ad click predictions | [paper] |
AFM | Attentional factorization machines: Learning the weight of feature interactions via attention networks | [paper] |
具体的使用方法请参见 README
本仓库实现了2个静态出价策略和3个基于强化学习的动态出价策略。
模型 | 论文 | 链接 |
---|---|---|
LIN | Bid optimizing and inventory scoring in targeted online advertising | [paper] |
ORTB | Optimal real-time bidding for display advertising | [paper] [code] |
RLB | Real-time bidding by reinforcement learning in display advertising | [paper] [code] |
DRLB | Budget constrained bidding by model-free reinforcement learning in display advertising | [paper] |
FAB | A dynamic bidding strategy based on model-free reinforcement learning in display advertising | [paper] [code] |
具体的使用方法请参见每个文件夹下的README
本项目采用 Apache License 2.0
- @JiaXingBinggan 贡献了本仓库的CTR预测模型代码