-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtranscribe.py
80 lines (67 loc) · 2.27 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from pickle import TRUE
import re
import speech_recognition as sr
import pyttsx3
import json
import requests
import traceback
import chatbot
import wave
import pyaudio
import whisper
from threading import Thread
whisper_filter_list = ['you', 'thank you.',
'thanks for watching.', "Thank you for watching."]
MIC_OUTPUT_FILENAME = "outfile.wav"
VOICE_OUTPUT_FILENAME = "audioResponse.wav"
logging_eventhandlers = []
def initialize_model():
global model
model = whisper.load_model("tiny")
auto_recording = False
def start_record_auto():
global auto_recording
auto_recording = True
thread = Thread(target=start_STTS_loop_chat)
thread.start()
def start_STTS_loop_chat():
global auto_recording
while auto_recording:
listen()
def stop_record_auto():
global auto_recording, ambience_adjusted
auto_recording = False
ambience_adjusted = False
def listen():
r = sr.Recognizer()
mic = sr.Microphone()
with mic as source:
r.adjust_for_ambient_noise(source, duration=0.2)
print("Speak now")
audio = r.listen(source)
with open(MIC_OUTPUT_FILENAME, "wb") as file:
file.write(audio.get_wav_data())
print("Transcribing")
global model
initialize_model()
audio = whisper.load_audio(MIC_OUTPUT_FILENAME)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
options = whisper.DecodingOptions(task='transcribe',
language='english', without_timestamps=True, fp16=False if model.device == 'cpu' else None)
result = whisper.decode(model, mel, options)
user_input = result.text
global whisper_filter_list
if (user_input == ''):
return
print(f'filtering')
if (user_input.strip().lower() in whisper_filter_list):
print(f'Input filtered.')
return
chatbot.send_user_input(user_input)
return
def log_message(message_text):
print(message_text)
global logging_eventhandlers
for eventhandler in logging_eventhandlers:
eventhandler(message_text)