Skip to content

Comprehensive Documentation Overhaul #29

@iAmGiG

Description

@iAmGiG

Goal

Create comprehensive, professional documentation for the modernized system.

Documentation Structure

docs/
├── README.md                      # Documentation index
├── GETTING_STARTED.md             # Quick start guide
├── ARCHITECTURE.md                # ✅ Complete
├── MODERNIZATION_ROADMAP.md       # ✅ Complete
├── guides/
│   ├── INSTALLATION.md            # Installation instructions
│   ├── TRAINING_GUIDE.md          # How to train models
│   ├── EVALUATION_GUIDE.md        # How to evaluate
│   ├── DEPLOYMENT_GUIDE.md        # Production deployment
│   └── CONTRIBUTING.md            # Contribution guidelines
├── research/
│   ├── OVERFITTING_ANALYSIS.md    # Analysis results
│   ├── FEATURE_SELECTION.md       # Fisher score analysis
│   ├── FEDERATED_LEARNING.md      # FL research
│   └── EXPLAINABILITY.md          # LIME interpretability
├── architecture/
│   ├── ARCHITECTURE.md            # ✅ Complete
│   ├── diagrams/                  # ✅ Scripts created
│   └── images/                    # Generated diagrams
├── api/                           # Auto-generated API docs
└── tutorials/
    ├── 01_data_preparation.md
    ├── 02_training_models.md
    ├── 03_evaluation.md
    └── 04_federated_learning.md

Key Documents to Create

User Guides

GETTING_STARTED.md:

  • Installation (conda, pip)
  • Quick start examples
  • First model training
  • Troubleshooting

TRAINING_GUIDE.md:

  • Anomaly detection training
  • Classification training
  • Federated learning training
  • Hyperparameter tuning
  • Training on GPU

EVALUATION_GUIDE.MD:

  • Model evaluation
  • Metrics interpretation
  • LIME explainability
  • Cross-validation
  • Overfitting analysis

DEPLOYMENT_GUIDE.md:

  • TensorFlow Serving
  • Docker containers
  • REST API
  • Monitoring
  • Production considerations

Research Documentation

OVERFITTING_ANALYSIS.md:

  • Test methodology
  • Results
  • Cross-device validation
  • Feature perturbation
  • Conclusions

FEATURE_SELECTION.md:

  • Fisher score methodology
  • Top features analysis
  • Accuracy vs feature count
  • Recommendations

FEDERATED_LEARNING.md:

  • FL architecture
  • Experiment design
  • Results comparison
  • Communication efficiency
  • Privacy considerations

API Documentation

Auto-generated from docstrings using pdoc3:

pdoc --html --output-dir docs/api src

Tutorials

Step-by-step Jupyter notebooks:

  1. Data preparation and exploration
  2. Training anomaly detection
  3. Training classifier
  4. Federated learning simulation

Deliverables

  • Write GETTING_STARTED.md
  • Write INSTALLATION.md
  • Write TRAINING_GUIDE.md
  • Write EVALUATION_GUIDE.md
  • Write DEPLOYMENT_GUIDE.md
  • Write CONTRIBUTING.md
  • Write OVERFITTING_ANALYSIS.md
  • Write FEATURE_SELECTION.md
  • Write FEDERATED_LEARNING.md
  • Write EXPLAINABILITY.md
  • Create tutorial notebooks
  • Generate API documentation
  • Update main README.md
  • Set up GitHub Pages

Standards

  • Use Markdown (GitHub-flavored)
  • Include code examples
  • Add diagrams where helpful
  • Clear section headers
  • Table of contents for long docs
  • Cross-reference related docs
  • Keep language professional

Related

Priority

HIGH - Essential for usability and adoption

Metadata

Metadata

Assignees

Labels

documentationImprovements or additions to documentationmodernizationModernizing code, dependencies, and structure

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions