-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
421 lines (394 loc) · 13.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# 对大模型的输出进行eval得到正确率的文件
# 分任务对大模型的输出进行eval
import pandas as pd
import glob
import os
import re
import sys
sys.path.append("/home/yangchengwu/home2/Hyper_2024/hypergraphqa")
from hypergraph_text_encoder import NODE_ENCODER_DICT
from tqdm import tqdm
def remove_duplicates(dict_list):
seen = set()
unique_dicts = []
for d in dict_list:
marker = (d['id'], d['text_encoding'])
if marker not in seen:
seen.add(marker)
unique_dicts.append(d)
return unique_dicts
def judge_connected_vertices(gt,output):
origin_output = output
# find gt result from text
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
index_end = output.find(']')
if index_begin == -1:
if "information" in output:
return False
else:
output = ''
print("wrong")
else:
if index_end != -1:
output = output[index_begin:index_end]
else:
output = output[index_begin:]
matches = re.findall(r'(\d+)', output)
if len(matches) != 0:
output = matches
else:
output = re.findall(r"\d+",output)
output = list(set(output))
gt = gt.replace('.','')
gt = gt.split(',')
try:
if "No vertices" in gt:
return len(output) == 0 or "no vertex" in origin_output.lower()
else:
return sorted(output,key=int) == sorted(gt,key=int)
except:
return False
def judge_vertex_count(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
if index_begin == -1:
print("wrong")
else:
output = output[index_begin:]
result = re.findall(r"(\d+)",output)
# try:
if len(result) == 0:
try:
result = int(re.findall(r"\d+",output)[0])
except:
result = 0
else:
result = int(result[0])
gt = int(float(gt))
return gt == result
def judge_disconnected_vertices(gt,output):
origin_output = output
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
index_end = output.find(']')
if index_begin == -1:
if "information" in output:
return False
else:
output = ''
print("wrong")
else:
if index_end != -1:
output = output[index_begin:index_end]
else:
output = output[index_begin:]
matches = re.findall(r'(\d+)', output)
if len(matches) != 0:
output = matches
else:
output = re.findall(r"\d+",output)
output = list(set(output))
gt = gt[:-1].split(',')
if "No vertices" in gt:
return len(output) == 0 or "no vertex" in origin_output.lower()
else:
return sorted(output,key=int) == sorted(gt,key=int)
def judge_reachability(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
if index_begin == -1:
if 'information' in output:
return False
else:
output = output[index_begin:]
output_list = re.findall(r'\w+', output)
if 'No' in output_list and 'Yes' in output_list:
return False
if "No" in gt:
if gt[:-1] in output:
return True
else:
return False
else:
if gt[:-1].lower() in output.lower():
return True
else:
return False
def judge_edge_existence(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
if index_begin == -1:
if 'information' in output:
return False
else:
output = output[index_begin:]
output_list = re.findall(r'\w+', output)
if 'No' in output_list and 'Yes' in output_list:
return False
if "No" in gt:
if gt[:-1] in output:
return True
else:
return False
else:
if gt[:-1].lower() in output.lower():
return True
else:
return False
def judge_vertex_degree(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
index_end = output.rfind(']')
if index_begin == -1:
if 'information' in output:
return False
print("wrong")
else:
if index_end != -1:
output = output[index_begin:index_end]
else:
output = output[index_begin:]
result = re.findall(r"(\d+)",output)
if len(result) == 0:
result = 0
else:
result = int(result[0])
gt = int(float(gt))
return gt == result
def judge_shortest_path(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
if index_begin == -1:
if 'information' in output:
return False
print("wrong")
else:
output = output[index_begin:]
if "There is no path from " in gt:
return "no path" in output.lower()
try:
matches = re.findall(r'(\d+)', output)
matches = int(matches[0])
except:
matches = 0
gt = int(float(gt))
return gt == matches
def judge_edge_count(gt,output):
gt = int(float(gt))
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
# index_end = output.rfind(']')
if index_begin == -1:
print("wrong")
else:
output = output[index_begin:]
result = re.findall(r"(\d+)",output)
try:
if len(result) == 0:
result = int(re.findall(r"\d+",output)[0])
else:
result = int(result[0])
except:
result = 0
return gt == result
def judge_set_connection(gt,output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
index_end = output.find(']')
if index_begin == -1:
if 'information' in output:
return False
# print("wrong")
else:
if index_end == -1:
output = output[index_begin:]
else:
output = output[index_begin:index_end]
output_list = re.findall(r'\w+', output)
if 'No' in output_list and 'Yes' in output_list:
return False
if "No" in gt:
if gt[:-1] in output:
return True
else:
return False
else:
if gt[:-1].lower() in output.lower():
return True
else:
return False
judge_set_existence = judge_set_connection
def parse_prediction_hypergraph(output):
begin_temp = ['Ans','A','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
# index_end = output.rfind(']')
if index_begin == -1:
return output
else:
output = output[index_begin:]
return output
def convert_text_to_int(output,graph_text):
for i,val in enumerate(NODE_ENCODER_DICT[graph_text].values()):
output = output.replace(val,str(i))
return output
def judge_shape_prediction(gt,output):
gt = int(float(gt[:-1]))
begin_temp = ['Ans','A:','[','the answer is:']
for i,temp in enumerate(begin_temp):
index_begin = output.find(temp)
if index_begin != -1:
break
# index_end = output.rfind(']')
if index_begin == -1:
print("wrong")
if 'Prompt tokens' in output or 'max input' in output:
return False
else:
output = output[index_begin:]
result = re.findall(r"(\d+)",output)
try:
result = int(result[0])
except:
result = -1
return gt == result
EVAL_SOLOVER = {
'hyperedge_count':judge_edge_count,
'vertex_count':judge_vertex_count,
'vertex_degree':judge_vertex_degree,
'vertex_connection':judge_edge_existence,
'reachability':judge_reachability,
'shortest_path':judge_shortest_path,
'connected_vertices':judge_connected_vertices,
'disconnected_vertices':judge_disconnected_vertices,
'hyperedge_degree':judge_vertex_degree,
'vertexset_connection':judge_set_connection,
'vertexset_hyperedge':judge_set_existence,
'hyperedge_hyperedge':judge_edge_existence,
'shared_vertices':judge_connected_vertices,
'isomorphism':judge_edge_existence,
"shape_prediction":judge_shape_prediction,
}
from multiprocessing import Pool
from multiprocessing import Manager
def eval_muti_process(qa):
gt = str(qa['answer'])
graph_text = qa['text_encoding']
output = qa['response'] if 'response' in qa.keys() else qa['output']
if graph_text not in text_encodding:
text_encodding[graph_text] = {'correct':0,'total':0,'TP':0,'TN':0,'FP':0,'FN':0}
tmp = text_encodding[graph_text]
for i,val in enumerate(NODE_ENCODER_DICT[graph_text].values()):
output = output.replace(val,str(i))
gt = gt.replace(val,str(i))
if 'reachability' in name or 'isomorphism' in name:
solver = name.split('_')[0]
else:
solver = name.split('_')[0] + '_' +name.split('_')[1]
solver = EVAL_SOLOVER[solver]
output = output.replace('[Yes, No,]','')
if solver(gt=gt,output=output):
qa['result'] = True
tmp['correct'] += 1
else:
qa['result'] = False
tmp['total'] += 1
text_encodding[graph_text] = tmp
if __name__ == '__main__':
ret = {}
path_list = glob.glob("")
for j,path in enumerate(path_list):
name = os.path.basename(path).split('.')[0]
df = pd.read_csv(path)
list_of_dicts = df.to_dict(orient='records')
list_of_dicts = [i for i in list_of_dicts if 'Prompt tokens too long' not in str(i['response']) and 'context length error' not in str(i['response']) and 'nan' != str(i['response'])]
text_encodding = Manager().dict()
with Pool(processes=1) as pool:
list(tqdm(pool.imap(eval_muti_process, list_of_dicts,chunksize=1), total=len(list_of_dicts), desc=f'File:{len(list_of_dicts)}{name}:{j}/{len(path_list)}'))
text_encodding = dict(text_encodding)
for key,value in text_encodding.items():
if key not in ret:
ret[key] = {}
tmp = ret[key]
tmp[name] = value['correct'] / (value['total']+1e-8)
desired_order = ['zero_shot', 'zero_cot', 'few_shot', 'cot','cot_bag']
desired_order_2 = ['hyperedge_count',
'vertex_count',
'vertex_degree',
'vertex_connection',
'reachability',
'shortest_path',
'connected_vertices',
'disconnected_vertices',
'hyperedge_degree',
'vertexset_connection',
'vertexset_hyperedge',
'hyperedge_hyperedge',
'shared_vertices',
'isomorphism',]
def extract_substring(key, substrings,substrings2):
index = len(substrings)
max_len = 0
for substring in substrings:
if substring in key:
if len(substring) > max_len:
index = substrings.index(substring)
max_len = len(substring)
index2 = len(substrings2)
max_len2 = 0
for substring in substrings2:
if substring in key:
if len(substring) > max_len:
index2 = substrings2.index(substring)
max_len2 = len(substring)
return index*len(substrings2) + index2
from collections import OrderedDict
ret_order = {}
for key in ret.keys():
value = ret[key]
sorted_keys = sorted(value.keys(), key=lambda k: extract_substring(k, desired_order,desired_order_2))
sorted_dict = OrderedDict()
for k in sorted_keys:
sorted_dict[k] = value[k]
ret_order[key] = sorted_dict
for key,value in ret_order.items():
for k,v in value.items():
print(f'encoding:{key},name:{k},acc:{round(v,3)}')
seq_mark = -1
for k,v in value.items():
tmp = extract_substring(k,desired_order,[''])
if seq_mark < tmp:
seq_mark = tmp
print(f'{round(v,3)}',end=' ')
print(f'\n******************************************\n')
desired_order = ['zero_shot', 'zero_cot', 'few_shot', 'cot','cot_bag']