-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
executable file
·320 lines (239 loc) · 12.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys
import pickle
import time
from docopt import docopt
# from nltk.translate.bleu_score import corpus_bleu, sentence_bleu, SmoothingFunction
import sacrebleu
from nmt_model import Hypothesis, NMT
import numpy as np
from typing import List, Tuple, Dict, Set, Union
from tqdm import tqdm
from utils import read_corpus, batch_iter
from vocab import Vocab, VocabEntry
import torch
import torch.nn.utils
def evaluate_ppl(model, dev_data, batch_size=32):
""" Evaluate perplexity on dev sentences
@param model (NMT): NMT Model
@param dev_data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence
@param batch_size (batch size)
@returns ppl (perplixty on dev sentences)
"""
was_training = model.training
model.eval()
cum_loss = 0.
cum_tgt_words = 0.
# no_grad() signals backend to throw away all gradients
with torch.no_grad():
for src_sents, tgt_sents in batch_iter(dev_data, batch_size):
loss = -model(src_sents, tgt_sents).sum()
cum_loss += loss.item()
tgt_word_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `<s>`
cum_tgt_words += tgt_word_num_to_predict
ppl = np.exp(cum_loss / cum_tgt_words)
if was_training:
model.train()
return ppl
def compute_corpus_level_bleu_score(references: List[List[str]], hypotheses: List[Hypothesis]) -> float:
""" Given decoding results and reference sentences, compute corpus-level BLEU score.
@param references (List[List[str]]): a list of gold-standard reference target sentences
@param hypotheses (List[Hypothesis]): a list of hypotheses, one for each reference
@returns bleu_score: corpus-level BLEU score
"""
# remove the start and end tokens
if references[0][0] == '<s>':
references = [ref[1:-1] for ref in references]
# detokenize the subword pieces to get full sentences
detokened_refs = [''.join(pieces).replace('▁', ' ') for pieces in references]
detokened_hyps = [''.join(hyp.value).replace('▁', ' ') for hyp in hypotheses]
# sacreBLEU can take multiple references (golden example per sentence) but we only feed it one
bleu = sacrebleu.corpus_bleu(detokened_hyps, [detokened_refs])
return bleu.score
def train(args: Dict):
""" Train the NMT Model.
@param args (Dict): args from cmd line
"""
train_data_src = read_corpus(args['--train-src'], source='src', vocab_size=21000)
train_data_tgt = read_corpus(args['--train-tgt'], source='tgt', vocab_size=8000)
dev_data_src = read_corpus(args['--dev-src'], source='src', vocab_size=3000)
dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt', vocab_size=2000)
train_data = list(zip(train_data_src, train_data_tgt))
dev_data = list(zip(dev_data_src, dev_data_tgt))
train_batch_size = int(args['--batch-size'])
clip_grad = float(args['--clip-grad'])
valid_niter = int(args['--valid-niter'])
log_every = int(args['--log-every'])
model_save_path = args['--save-to']
vocab = Vocab.load(args['--vocab'])
# model = NMT(embed_size=int(args['--embed-size']),
# hidden_size=int(args['--hidden-size']),
# dropout_rate=float(args['--dropout']),
# vocab=vocab)
model = NMT(embed_size=1024,
hidden_size=1024,
dropout_rate=float(args['--dropout']),
vocab=vocab)
model.train()
uniform_init = float(args['--uniform-init'])
if np.abs(uniform_init) > 0.:
print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr)
for p in model.parameters():
p.data.uniform_(-uniform_init, uniform_init)
vocab_mask = torch.ones(len(vocab.tgt))
vocab_mask[vocab.tgt['<pad>']] = 0
device = torch.device("cuda:0" if args['--cuda'] else "cpu")
print('use device: %s' % device, file=sys.stderr)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr']))
num_trial = 0
train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0
cum_examples = report_examples = epoch = valid_num = 0
hist_valid_scores = []
train_time = begin_time = time.time()
print('begin Maximum Likelihood training')
while True:
epoch += 1
for src_sents, tgt_sents in batch_iter(train_data, batch_size=train_batch_size, shuffle=True):
train_iter += 1
optimizer.zero_grad()
batch_size = len(src_sents)
example_losses = -model(src_sents, tgt_sents) # (batch_size,)
batch_loss = example_losses.sum()
loss = batch_loss / batch_size
loss.backward()
# clip gradient
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad)
optimizer.step()
batch_losses_val = batch_loss.item()
report_loss += batch_losses_val
cum_loss += batch_losses_val
tgt_words_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `<s>`
report_tgt_words += tgt_words_num_to_predict
cum_tgt_words += tgt_words_num_to_predict
report_examples += batch_size
cum_examples += batch_size
if train_iter % log_every == 0:
print('epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' \
'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % (epoch, train_iter,
report_loss / report_examples,
math.exp(report_loss / report_tgt_words),
cum_examples,
report_tgt_words / (time.time() - train_time),
time.time() - begin_time), file=sys.stderr)
train_time = time.time()
report_loss = report_tgt_words = report_examples = 0.
# perform validation
if train_iter % valid_niter == 0:
print('epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter,
cum_loss / cum_examples,
np.exp(cum_loss / cum_tgt_words),
cum_examples), file=sys.stderr)
cum_loss = cum_examples = cum_tgt_words = 0.
valid_num += 1
print('begin validation ...', file=sys.stderr)
# compute dev. ppl and bleu
dev_ppl = evaluate_ppl(model, dev_data, batch_size=128) # dev batch size can be a bit larger
valid_metric = -dev_ppl
print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr)
is_better = len(hist_valid_scores) == 0 or valid_metric > max(hist_valid_scores)
hist_valid_scores.append(valid_metric)
if is_better:
patience = 0
print('save currently the best model to [%s]' % model_save_path, file=sys.stderr)
model.save(model_save_path)
# also save the optimizers' state
torch.save(optimizer.state_dict(), model_save_path + '.optim')
elif patience < int(args['--patience']):
patience += 1
print('hit patience %d' % patience, file=sys.stderr)
if patience == int(args['--patience']):
num_trial += 1
print('hit #%d trial' % num_trial, file=sys.stderr)
if num_trial == int(args['--max-num-trial']):
print('early stop!', file=sys.stderr)
exit(0)
# decay lr, and restore from previously best checkpoint
lr = optimizer.param_groups[0]['lr'] * float(args['--lr-decay'])
print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)
# load model
params = torch.load(model_save_path, map_location=lambda storage, loc: storage)
model.load_state_dict(params['state_dict'])
model = model.to(device)
print('restore parameters of the optimizers', file=sys.stderr)
optimizer.load_state_dict(torch.load(model_save_path + '.optim'))
# set new lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# reset patience
patience = 0
if epoch == int(args['--max-epoch']):
print('reached maximum number of epochs!', file=sys.stderr)
exit(0)
def decode(args: Dict[str, str]):
""" Performs decoding on a test set, and save the best-scoring decoding results.
If the target gold-standard sentences are given, the function also computes
corpus-level BLEU score.
@param args (Dict): args from cmd line
"""
print("load test source sentences from [{}]".format(args['TEST_SOURCE_FILE']), file=sys.stderr)
test_data_src = read_corpus(args['TEST_SOURCE_FILE'], source='src', vocab_size=3000)
if args['TEST_TARGET_FILE']:
print("load test target sentences from [{}]".format(args['TEST_TARGET_FILE']), file=sys.stderr)
test_data_tgt = read_corpus(args['TEST_TARGET_FILE'], source='tgt', vocab_size=2000)
print("load model from {}".format(args['MODEL_PATH']), file=sys.stderr)
model = NMT.load(args['MODEL_PATH'])
if args['--cuda']:
model = model.to(torch.device("cuda:0"))
hypotheses = beam_search(model, test_data_src,
# beam_size=int(args['--beam-size']),
beam_size=10,
max_decoding_time_step=int(args['--max-decoding-time-step']))
if args['TEST_TARGET_FILE']:
top_hypotheses = [hyps[0] for hyps in hypotheses]
bleu_score = compute_corpus_level_bleu_score(test_data_tgt, top_hypotheses)
print('Corpus BLEU: {}'.format(bleu_score), file=sys.stderr)
with open(args['OUTPUT_FILE'], 'w') as f:
for src_sent, hyps in zip(test_data_src, hypotheses):
top_hyp = hyps[0]
hyp_sent = ''.join(top_hyp.value).replace('▁', ' ')
f.write(hyp_sent + '\n')
def beam_search(model: NMT, test_data_src: List[List[str]], beam_size: int, max_decoding_time_step: int) -> List[List[Hypothesis]]:
""" Run beam search to construct hypotheses for a list of src-language sentences.
@param model (NMT): NMT Model
@param test_data_src (List[List[str]]): List of sentences (words) in source language, from test set.
@param beam_size (int): beam_size (# of hypotheses to hold for a translation at every step)
@param max_decoding_time_step (int): maximum sentence length that Beam search can produce
@returns hypotheses (List[List[Hypothesis]]): List of Hypothesis translations for every source sentence.
"""
was_training = model.training
model.eval()
hypotheses = []
with torch.no_grad():
for src_sent in tqdm(test_data_src, desc='Decoding', file=sys.stdout):
example_hyps = model.beam_search(src_sent, beam_size=beam_size, max_decoding_time_step=max_decoding_time_step)
hypotheses.append(example_hyps)
if was_training: model.train(was_training)
return hypotheses
def main():
""" Main func.
"""
args = docopt(__doc__)
# Check pytorch version
assert(torch.__version__ >= "1.0.0"), "Please update your installation of PyTorch. You have {} and you should have version 1.0.0".format(torch.__version__)
# seed the random number generators
seed = int(args['--seed'])
torch.manual_seed(seed)
if args['--cuda']:
torch.cuda.manual_seed(seed)
np.random.seed(seed * 13 // 7)
if args['train']:
train(args)
elif args['decode']:
decode(args)
else:
raise RuntimeError('invalid run mode')
if __name__ == '__main__':
main()