Index object is an immutable
array.
There are two types of index in a DataFrame row index
and column index
Both indexes starts from 0
, allows to access a row
or column
using an index position or label name.
# First row and first column:
df .iloc [0 , 0 ]
Method
Access
Example
.at[]
Access scalar value + Label based location
df.at[1,'Country']
or df['City'].at[1]
.iat[]
Access scalar value + Integer based location
df.iat[1,3]
or df['City'].iat[1]
.loc[]
Access record or field + Label based location
df.loc[0,'City']
or df['City'].loc[1]
.iloc[]
Access record or field + Integer based location
df.iloc[0,1]
or df['City'].iloc[1]
DataFrame.at[]
: Label based location
# DataFrame:
print (df .at [1 , 'Country' ])
# Series:
print (df ['Country' ].at [1 ])
DataFrame.iat[]
: Integer based location
Access scalar
value or entire row
or column
DataFrame.loc[]
: Label based location
# DataFrame.loc[]
print (df .loc [0 , 'City' ])
# Subset of DataFrame:
print (df .loc [[1 , 2 , 3 ], ['City' , 'State' , 'Country' ]])
# Slicing DataFrame:
print (df .loc [1 :5 , 'Name' :'Country' ])
# DataFrame.Series.loc[]
print (df ['City' ].loc [1 ])
# Subset of DataFrame:
print (df [['City' , 'State' , 'Country' ]].loc [[1 , 2 , 3 ]])
# Slicing DataFrame:
print (df ['Name' :'Country' ].loc [1 :5 ])
DataFrame.iloc[]
: Integer based location
# DataFrame.iloc[]
print (df .iloc [0 , 1 ])
# Subset of DataFrame:
print (df .iloc [[1 , 2 , 3 ], [2 , 4 , 6 ]])
# Slicing DataFrame:
print (df .iloc [1 :5 , 1 :6 :2 ])
# DataFrame.Series.iloc[]
print (df ['City' ].iloc [1 ])
# Subset of DataFrame:
print (df [['City' , 'State' , 'Country' ]].iloc [[1 , 2 , 3 ]])
# Slicing DataFrame:
print (df ['Name' :'Country' ].iloc [1 :5 ])