|
1 | 1 | ## Installation Guide
|
2 | 2 |
|
| 3 | +### **Instruction to install PISA on your local machine** |
| 4 | + |
| 5 | +1. Install the essential dependencies |
| 6 | + |
| 7 | + 1. Anaconda (https://www.anaconda.com/) |
| 8 | + ```bash |
| 9 | + wget -nc https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh |
| 10 | + |
| 11 | + bash Anaconda3-2023.07-2-Linux-x86_64.sh |
| 12 | + ``` |
| 13 | + 2. pip (Python package installer) |
| 14 | + ```bash |
| 15 | + conda install pip |
| 16 | + ``` |
| 17 | + 3. Git |
| 18 | + ```bash |
| 19 | + sudo apt install git |
| 20 | + ``` |
| 21 | + |
| 22 | + Other required libraries (listed below) will be installed automatically during the setup (listed in `setup.py`). |
| 23 | + |
| 24 | + - fast-histogram >= 0.10 |
| 25 | + - h5py |
| 26 | + - iminuit >= 2 |
| 27 | + - line_profiler |
| 28 | + - llvmlite |
| 29 | + - matplotlib >= 3.0 |
| 30 | + - nlopt |
| 31 | + - numba >= 0.53 |
| 32 | + - numpy >=1.17, < 1.23 |
| 33 | + - pandas |
| 34 | + - pint <=0.19 |
| 35 | + - py-cpuinfo |
| 36 | + - pyarrow |
| 37 | + - scikit-learn <= 1.1.2 |
| 38 | + - scipy >= 1.6 |
| 39 | + - simplejson == 3.18.4 |
| 40 | + - sympy |
| 41 | + - tables |
| 42 | + - tabulate |
| 43 | + - tqdm |
| 44 | + - uncertainties |
| 45 | + - kiwisolver >= 1.3.1 |
| 46 | + - cycler >= 0.10 |
| 47 | + - packaging >= 20.0 |
| 48 | + - fonttools >= 4.22.0 |
| 49 | + - python-dateutil >= 2.7 |
| 50 | + - pillow >= 8 |
| 51 | + - contourpy >= 1.0.1 |
| 52 | + - pyparsing >= 2.3.1 |
| 53 | + - threadpoolctl >= 2.0.0 |
| 54 | + - joblib >= 1.0.0 |
| 55 | + - numexpr |
| 56 | + - pytz >= 2020.1 |
| 57 | + - tzdata >= 2022.1 |
| 58 | + - mpmath >= 0.19 |
| 59 | + - blosc2 >= 2.3.0 |
| 60 | + - future |
| 61 | + - ndindex >= 1.4 |
| 62 | + - msgpack |
| 63 | + - six >= 1.5 |
| 64 | +2. Create conda environment/ virtual environment for the installation of PISA. Assume that the name of the environment is `pisa_env` you can choose your preferred version of python >= 3.7 |
| 65 | + |
| 66 | +```bash |
| 67 | +conda create -n pisa_env python=3.X |
| 68 | +``` |
| 69 | + |
| 70 | +2. Activate the newly created environment (You can see the name of your environment in the bash shell after the activation) |
| 71 | + |
| 72 | +```bash |
| 73 | +conda activate pisa_env |
| 74 | +``` |
| 75 | + |
| 76 | +4. Clone the PISA repository from github (https://github.com/icecube/pisa.git) |
| 77 | + |
| 78 | +```bash |
| 79 | +git clone https://github.com/icecube/pisa.git |
| 80 | +``` |
| 81 | + |
| 82 | +5. Install PISA with the following command |
| 83 | + |
| 84 | +```bash |
| 85 | +pip install -e pisa |
| 86 | +``` |
| 87 | + |
| 88 | +Arguments: |
| 89 | + |
| 90 | +* `pisa ` directory of source code |
| 91 | +* `-e` (editable) Installs from source located at `$PISA` (Installed directory - pisa) and allows for changes to the source code within to be immediately propagated to your Python installation. |
| 92 | +* `-vvv` Be maximally verbose during the install. You'll see lots of messages, including warnings that are irrelevant, but if your installation fails, it's easiest to debug if you use `-vvv` |
| 93 | +* `[develop]` Specify optional dependency groups. You can omit any or all of these if your system does not support them or if you do not need them. |
| 94 | + |
| 95 | +### **Test your installation by running a simple script:** |
| 96 | + |
| 97 | +- Activate your python environment (`pisa_env`) |
| 98 | + |
| 99 | + ```bash |
| 100 | + conda activate pisa_env |
| 101 | + ``` |
| 102 | +- Start python interpretator in terminal |
| 103 | + |
| 104 | + ```bash |
| 105 | + python |
| 106 | + ``` |
| 107 | +- Import `Pipline` modelue and `matplotlib.pyplot` |
| 108 | + |
| 109 | + ```python |
| 110 | + from pisa.core import Pipeline |
| 111 | + import matplotlib.pyplot as plt |
| 112 | + ``` |
| 113 | + ``` |
| 114 | + << PISA is running in single precision (FP32) mode; numba is running on CPU (single core) >> |
| 115 | + ``` |
| 116 | +- Load an example pipeline |
| 117 | +
|
| 118 | + ```python |
| 119 | + template_maker = Pipeline("settings/pipeline/osc_example.cfg") |
| 120 | + ``` |
| 121 | +- Run the pipeline |
| 122 | +
|
| 123 | + ```python |
| 124 | + template_maker.run() |
| 125 | + ``` |
| 126 | +- Get the oscillation probabilities as a map |
| 127 | +
|
| 128 | + ```python |
| 129 | + outputs = template_maker.data.get_mapset('prob_mu') |
| 130 | + ``` |
| 131 | +- Plot the oscillgram |
| 132 | +
|
| 133 | + ```python |
| 134 | + fig, axes = plt.subplots(figsize=(18, 5), ncols=3) |
| 135 | + outputs['nue_cc'].plot(ax=axes[0], cmap='RdYlBu_r', vmin=0, vmax=1); |
| 136 | + outputs['numu_cc'].plot(ax=axes[1], cmap='RdYlBu_r', vmin=0, vmax=1); |
| 137 | + outputs['nutau_cc'].plot(ax=axes[2], cmap='RdYlBu_r', vmin=0, vmax=1); |
| 138 | + ``` |
| 139 | +
|
3 | 140 | ### Instructions to install PISA on Madison working group servers cobalts (current guide from August 2023):
|
4 | 141 |
|
5 | 142 | Assuming you already are in the directory where you want to store fridge/pisa source files and the python virtualenv and build pisa. You also need access to github through your account.
|
|
0 commit comments