-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
2760 lines (2358 loc) · 153 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\def\module{M3P21 Geometry II: Algebraic Topology}
\def\lecturer{Dr Christian Urech}
\def\term{Spring 2019}
\def\cover{
$$
\begin{tikzcd}[ampersand replacement=\&, row sep=tiny]
\& \& \& 0 \arrow{dd} \& \& 0 \arrow{dd} \& \& 0 \arrow{dd} \& \& \\
\& \& 0 \& \& 0 \& \& 0 \& \& \& \\
\& \dots \arrow[near start]{rr}{\partial} \& \& A_{n + 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{i'} \& \& A_n' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{i'} \& \& A_{n - 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{i'} \& \& \dots \\
\dots \arrow[near start]{rr}{\partial} \& \& A_{n + 1} \arrow[from=uu, crossing over, near start] \arrow{ur}{\alpha} \arrow[crossing over, near start]{rr}{\partial} \& \& A_n \arrow[from=uu, crossing over, near start] \arrow{ur}{\alpha} \arrow[crossing over, near start]{rr}{\partial} \& \& A_{n - 1} \arrow[from=uu, crossing over, near start] \arrow{ur}{\alpha} \arrow[crossing over, near start]{rr}{\partial} \& \& \dots \& \\
\& \dots \arrow[near start]{rr}{\partial} \& \& B_{n + 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{j'} \& \& B_n' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{j'} \& \& B_{n - 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd}{j'} \& \& \dots \\
\dots \arrow[near start]{rr}{\partial} \& \& B_{n + 1} \arrow[from=uu, crossing over, near start]{}{i} \arrow{ur}{\beta} \arrow[crossing over, near start]{rr}{\partial} \& \& B_n \arrow[from=uu, crossing over, near start]{}{i} \arrow{ur}{\beta} \arrow[crossing over, near start]{rr}{\partial} \& \& B_{n - 1} \arrow[from=uu, crossing over, near start]{}{i} \arrow{ur}{\beta} \arrow[crossing over, near start]{rr}{\partial} \& \& \dots \& \\
\& \dots \arrow[near start]{rr}{\partial} \& \& C_{n + 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd} \& \& C_n' \arrow[near start]{rr}{\partial} \arrow[near start]{dd} \& \& C_{n - 1}' \arrow[near start]{rr}{\partial} \arrow[near start]{dd} \& \& \dots \\
\dots \arrow[near start]{rr}{\partial} \& \& C_{n + 1} \arrow[from=uu, crossing over, near start]{}{j} \arrow{ur}{\gamma} \arrow[crossing over, near start]{rr}{\partial} \& \& C_n \arrow[from=uu, crossing over, near start]{}{j} \arrow{ur}{\gamma} \arrow[crossing over, near start]{rr}{\partial} \& \& C_{n - 1} \arrow[from=uu, crossing over, near start]{}{j} \arrow{ur}{\gamma} \arrow[crossing over, near start]{rr}{\partial} \& \& \dots \& \\
\& \& \& 0 \& \& 0 \& \& 0 \& \& \\
\& \& 0 \arrow[from=uu] \& \& 0 \arrow[from=uu] \& \& 0 \arrow[from=uu] \& \& \&
\end{tikzcd}
$$
$$
\Downarrow
$$
$$
\begin{tikzcd}[ampersand replacement=\&, row sep=small]
\dots \arrow{r}{\partial} \& \H_{n + 1}\br{A} \arrow{r}{i_*} \arrow{d}{\alpha_*} \& \H_{n + 1}\br{B} \arrow{r}{j_*} \arrow{d}{\beta_*} \& \H_{n + 1}\br{C} \arrow{d}{\gamma_*} \arrow{ddl}{\partial} \& \& \& \\
\dots \arrow{r}{\partial} \& \H_{n + 1}\br{A'} \arrow{r}{i_*} \& \H_{n + 1}\br{B'} \arrow{r}{j_*} \& \H_{n + 1}\br{C'} \arrow{ddl}{\partial} \& \& \& \\
\& \& \H_n\br{A} \arrow{r}{i_*} \arrow{d}{\alpha_*} \& \H_n\br{B} \arrow{r}{j_*} \arrow{d}{\beta_*} \& \H_n\br{C} \arrow{d}{\gamma_*} \arrow{ddl}{\partial} \& \& \\
\& \& \H_n\br{A'} \arrow{r}{i_*} \& \H_n\br{B'} \arrow{r}{j_*} \& \H_n\br{C'} \arrow{ddl}{\partial} \& \& \\
\& \& \& \H_{n - 1}\br{A} \arrow{r}{i_*} \arrow{d}{\alpha_*} \& \H_{n - 1}\br{B} \arrow{r}{j_*} \arrow{d}{\beta_*} \& \H_{n - 1}\br{C} \arrow{r}{\partial} \arrow{d}{\gamma_*} \& \dots \\
\& \& \& \H_{n - 1}\br{A'} \arrow{r}{i_*} \& \H_{n - 1}\br{B'} \arrow{r}{j_*} \& \H_{n - 1}\br{C'} \arrow{r}{\partial} \& \dots
\end{tikzcd}
$$
}
\def\syllabus{Homotopy and homotopy type. Cell complexes. Basic constructions of the fundamental group. Seifert-van Kampen theorem. Covering spaces. $ \Delta $-complexes. Simplicial homology. Singular homology. Homotopy invariance. Exact sequences and excision. Mayer-Vietoris sequences. Degree.}
\def\thm{section}
\input{header}
\begin{document}
\input{cover}
\section{Introduction}
\subsection{Introduction}
\lecture{1}{Friday}{11/01/19}
Combines topological spaces with algebraic objects, which are groups.
\begin{itemize}
\item How to show that a torus is not homeomorphic to a sphere?
\item How to show that $ \RR^n \ncong \RR^m $ if $ n \ne m $?
\end{itemize}
We will follow chapter one and two from
\begin{itemize}
\item A Hatcher, Algebraic topology, 2002
\end{itemize}
The following are prerequisites.
\begin{itemize}
\item Point set topology. Topological spaces, continuous maps, product and quotient topologies, Hausdorff spaces, etc.
\item Basic group theory. Normal subgroups and quotients, isomorphism theorems, free groups, presentation of groups, etc.
\end{itemize}
\subsection{Some underlying geometric notions}
\subsubsection{Homotopy and homotopy type}
Let $ X $ and $ Y $ be topological spaces and $ \I = \sbr{0, 1} $.
\begin{definition*}
A \textbf{homotopy} is a continuous map $ F : X \times \I \to Y $. For every $ t \in \I $ we obtain a continuous map
$$ \function[f_t]{X}{Y}{x}{f_t\br{x} = F\br{x, t}}. $$
\end{definition*}
\begin{definition*}
Two continuous maps $ f_0, f_1 : X \to Y $ are \textbf{homotopic} if there exists a homotopy $ F : X \times \I \to Y $ such that
$$ f_0\br{x} = F\br{x, 0}, \qquad f_1\br{x} = F\br{x, 1}, \qquad x \in X. $$
We write $ f_0 \cong f_1 $. This is an equivalence relation. \footnote{Exercise}
\end{definition*}
\begin{definition*}
Let $ A \subseteq X $ be a subspace. A \textbf{retraction} of $ X $ onto $ A $ is a continuous map $ r : X \to A $ such that $ r\br{X} = A $ and $ \eval{r}_A = \id_A $.
\end{definition*}
\begin{example*}
If $ X \ne \emptyset $, $ p \in X $, then $ X $ retracts to $ p $ by the constant map $ X \to \cbr{p} $.
\end{example*}
\begin{definition*}
A \textbf{deformation retraction} of $ X $ onto $ A \subseteq X $ is a retraction that is homotopic to the identity. That is, there is a continuous map
$$ \function[F]{X \times \I}{A}{\br{x, t}}{f_t\br{x}}, $$
such that $ f_0 = \id_X $ and $ f_1 : X \to A $ is the deformation retraction.
\end{definition*}
\begin{example*}
The closed $ n $-dimensional \textbf{$ n $-disc}
$$ \D^n = \cbr{x \in \RR^n \st \abs{x} \le 1} $$
deformation retracts to $ \br{0, \dots, 0} \in \RR^n $. Let $ f_t\br{x} = t \cdot x $. Then $ t = 1 $ implies that $ f_1 = \id_{\D^n} $ and $ t = 0 $ implies that $ f_0 : \D^n \to \br{0, \dots, 0} $.
\end{example*}
\pagebreak
\begin{example*}
Let $ \S^n $ be the \textbf{$ n $-sphere},
$$ \partial \D^{n + 1} = \S^n = \cbr{x \in \RR^n \st \abs{x} = 1}. $$
The cylinder $ \S^n \times \I $ deformation retracts to $ \S^n \times \cbr{0} $, by defining $ f_t\br{x, r} = \br{x, t \cdot r} $.
\end{example*}
An observation is that if $ X $ is a topological space, and $ f : X \to \cbr{p} $ for $ p \in X $ is a deformation retraction of $ X $ to $ p $, then $ X $ is path-connected. Indeed, if $ F : X \times \I \to X $ is a homotopy from $ \id_X $ to $ f $ and $ x \in X $ is a point, then this gives a path
$$ \function{\I}{X}{t}{F\br{x, t}} $$
that connects $ x $ to $ p $. This implies that not all retractions are deformation retractions.
\begin{example*}
A retraction that is not a deformation retraction. Take a space that is not path-connected and retract it to a point. Let $ X = \cbr{0, 1} $ with discrete topology. Then $ x \mapsto 0 $ is a retraction, but not a deformation retraction because $ X $ is not path-connected.
\end{example*}
\begin{definition*}
A continuous map $ f : X \to Y $ is a \textbf{homotopy equivalence} if there is a continuous map $ g : Y \to X $ such that $ fg \cong \id_Y $ and $ gf \cong \id_X $. If there exists a homotopy equivalence between $ X $ and $ Y $, $ X $ and $ Y $ are \textbf{homotopy equivalent} or they have the same \textbf{homotopy type}.
\end{definition*}
\begin{lemma}
A deformation retraction $ f : X \to A $ is a homotopy equivalence.
\end{lemma}
\begin{proof}
Let $ i : A \hookrightarrow X $ be the inclusion map. Then $ fi = \id_A $ and $ if = f \cong \id_X $ by definition.
\end{proof}
\begin{example*}
The disc with two holes is equivalent to
$$
\begin{tikzpicture}
\fill (0, 0) circle (0.1);
\draw (-0.5, 0) circle (0.5);
\draw (0.5, 0) circle (0.5);
\end{tikzpicture}.
$$
\end{example*}
\begin{example*}
$ \RR^n $ deformation retracts to a point, by $ f_t\br{x} = t \cdot x $.
\end{example*}
\begin{definition*}
\hfill
\begin{itemize}
\item $ X $ is \textbf{contractible} if it is homotopy equivalent to a point.
\item A continuous map is \textbf{nullhomotopic} if it is homotopy equivalent to a constant map.
\end{itemize}
\end{definition*}
\subsubsection{Cell complexes}
\begin{example*}
The \textbf{torus} $ \S^1 \times \S^1 $ is the union of a point, two open intervals, and the open disc $ \mathring{\D^2} $.
\end{example*}
These are called \textbf{cells}. Can think of discs $ \D^n $ glued together.
\lecture{2}{Tuesday}{15/01/19}
\begin{definition*}
A \textbf{CW-complex}, or \textbf{cell complex}, is a topological space $ X $ such that there exists a decomposition
$$ X = \bigcup_{n \in \NN} X^n, $$
where the $ X^n $ are constructed inductively in the following way.
\begin{itemize}
\item $ X^n $ is a discrete set.
\item For each $ n \ge 0 $ there is an collection of closed $ n $-discs $ \cbr{\D_\alpha^n} $ together with continuous maps $ \phi_\alpha : \partial \D_\alpha^n \to X^{n - 1} $, such that
$$ X^n = X^{n - 1} \sqcup \bigsqcup_\alpha \D_\alpha^n / \sim, $$
where $ x \sim \phi_\alpha\br{x} $ for all $ x \in \partial \D_\alpha^n $ for all $ \alpha $.
\item A subset $ U \subseteq X $ is open if and only if $ U \cap X^n $ is open for all $ n $.
\end{itemize}
\end{definition*}
\pagebreak
\begin{remark*}
\hfill
\begin{itemize}
\item As a set,
$$ X^n = X^{n - 1} \sqcup \bigsqcup_\alpha e_\alpha^n, $$
where each $ e_\alpha^n $ is homeomorphic to an open $ n $-disc. These $ e_\alpha^n $ are called the \textbf{$ n $-cells} of $ X $.
\item If $ X = X^m $ for some $ m $, then $ X $ is called \textbf{finite dimensional}. The minimal $ m $ such that $ X = X^m $ is the \textbf{dimension} of $ X $.
\end{itemize}
\end{remark*}
\begin{example*}
The following are CW-complexes.
$$ \sbr{0, 1}, \qquad \RR, \qquad \S^1, \qquad \text{a graph}, \qquad \S^n = \D^n / \partial \D^n. $$
Can also decompose CW-complexes.
\begin{itemize}
\item The sphere $ \S^2 $ is one $ 0 $-cell, one $ 1 $-cell, and two $ 2 $-cells.
\item The torus $ \S^1 \times \S^1 $ is one $ 0 $-cell, two $ 1 $-cells, and one $ 2 $-cell.
\item The M\"obius strip is two $ 0 $-cells, three $ 1 $-cells, and one $ 2 $-cell.
\item The Klein bottle is one $ 0 $-cell, two $ 1 $-cells, and one $ 2 $-cell.
\end{itemize}
\end{example*}
\begin{definition*}
If $ X $ is a CW-complex with finitely many cells the \textbf{Euler characteristic} $ \chi\br{X} $ of $ X $ is the number of even cells minus the number of odd cells.
\end{definition*}
\begin{fact*}
$ \chi\br{X} $ does not depend of the choice of cells decomposition.
\end{fact*}
\begin{example*}
\hfill
\begin{itemize}
\item $ \chi\br{\S^n} = 0 $ if $ n $ is odd and $ \chi\br{\S^n} = 2 $ if $ n $ is even.
\item $ \chi\br{\S^1 \times \S^1} = 0 $.
\end{itemize}
\end{example*}
This is the generalisation of the following observation by Leonhard Euler. Let $ P $ be a convex polyhedron, where $ V $ is the number of vertices of $ P $, $ E $ is the number of edges of $ P $, and $ F $ is the number of faces of $ P $. Then $ V - E + F = 2 $.
\begin{example*}
A topological space that is not a CW-complex. $ X = \cbr{0, 1} $ with trivial topology does not contain any closed points.
\end{example*}
\begin{fact*}
CW-complexes are always Hausdorff.
\end{fact*}
\pagebreak
\section{The fundamental group}
\subsection{Basic constructions}
\subsubsection{Paths and homotopy}
Let $ X $ be a topological space. A \textbf{path} is a continuous map $ f : \I \to X $, where $ \I = \sbr{0, 1} $.
\begin{definition*}
Two paths $ f_0 $ and $ f_1 $ are \textbf{homotopic} if there exists a homotopy between $ f_0 $ and $ f_1 $ preserving the endpoints, that is a continuous map
$$ \function[F]{\I \times \I}{X}{\br{s, t}}{f_t\br{s}}, $$
such that
$$ f_t\br{0} = f_0\br{0}, \qquad f_t\br{1} = f_0\br{1}, \qquad t \in \I, $$
$$ F\br{s, 0} = f_0\br{s}, \qquad F\br{s, 1} = f_1\br{s}, \qquad s \in \I. $$
\end{definition*}
\begin{example*}
Let $ X \subseteq \RR^n $ be a convex set. Then all the paths in $ X $ are homotopic if they have the same endpoints. Let $ f_0, f_1 : \I \to X $ be two paths such that $ f_0\br{0} = f_1\br{0} $ and $ f_0\br{1} = f_1\br{1} $. Define
$$ f_t\br{s} = \br{1 - t}f_0\br{s} + tf_1\br{s}. $$
\end{example*}
\begin{lemma}
Being homotopic is an equivalence relation on the set of paths with fixed endpoints. We will write $ f_0 \cong f_1 $ for two homotopic paths $ f_0 $ and $ f_1 $.
\end{lemma}
\begin{proof}
\hfill
\begin{itemize}
\item $ f $ is homotopic to $ f $.
\item If $ f_0 $ is homotopic to $ f_1 $ by a homotopy $ f_t $, then $ f_1 $ is homotopic to $ f_0 $ by the homotopy $ f_{1 - t} $.
\item If $ f_0 $ is homotopic to $ f_1 $ by a homotopy $ f_t $ and $ f_1 = g_0 $ is homotopic to $ g_1 $ by a homotopy $ g_t $, then $ f_0 $ is homotopic to $ g_1 $ by the homotopy
$$ h_t =
\begin{cases}
f_{2t} & 0 \le t \le \tfrac{1}{2} \\
g_{2t - 1} & \tfrac{1}{2} \le t \le 1
\end{cases}.
$$
Then
$$ \function[H]{\I \times \I}{X}{\br{s, t}}{h_t\br{s}} $$
is continuous because its restriction to the closed subsets $ \I \times \sbr{0, \tfrac{1}{2}} $ and $ \I \times \sbr{\tfrac{1}{2}, 1} $ is continuous, since if the restriction to two closed subsets is continuous then the restriction to the union of these subsets is continuous.
\end{itemize}
\end{proof}
\lecture{3}{Wednesday}{16/01/19}
Let $ X $ be a topological space and $ \I = \sbr{0, 1} $. If $ f : \I \to X $ is a path, $ \sbr{f} $ is the class of all paths on $ X $ homotopic to $ f $.
\begin{definition*}
Let $ f, g : \I \to X $ be two paths such that $ f\br{1} = g\br{0} $. The \textbf{product path} $ f \cdot g $ is the path
$$ \br{f \cdot g}\br{s} =
\begin{cases}
f\br{2s} & 0 \le s \le \tfrac{1}{2} \\
g\br{2s - 1} & \tfrac{1}{2} \le s \le 1
\end{cases}.
$$
\end{definition*}
A convention is that whenever we write $ f \cdot g $ we implicitly assume $ f\br{1} = g\br{0} $.
\begin{lemma}
\label{lem:1.2}
Let $ f_0, f_1, g_0, g_1 $ be paths on $ X $ such that $ f_1 \cong f_0 $ and $ g_0 \cong g_1 $. Then $ f_0 \cdot g_0 \cong f_1 \cdot g_1 $.
\end{lemma}
\begin{proof}
$$ \function{\I \times \I}{X}{\br{s, t}}{\br{f_t \cdot g_t}\br{s}} $$
is a homotopy between $ f_0 \cdot g_0 $ and $ f_1 \cdot g_1 $.
\end{proof}
\pagebreak
\begin{remark*}
Let $ \phi : \sbr{0, 1} \to \sbr{0, 1} $ be continuous such that $ \phi\br{0} = 0 $ and $ \phi\br{1} = 1 $. If $ f : \I \to X $ is a path, then $ f\phi \cong f $. This is a \textbf{reparametrisation}. Define
$$ \phi_t\br{s} = \br{1 - t}\phi\br{s} + ts, $$
then $ f\phi_t $ is a homotopy between $ f\phi $ and $ f $.
\end{remark*}
For $ x \in X $, let the \textbf{constant path} at $ x $ be
$$ \function[\c_x]{\I}{X}{s}{x}. $$
For a path $ f : \I \to X $, define
$$ \function[f^{-1}]{\I}{X}{s}{f\br{1 - s}}. $$
\begin{lemma}
\label{lem:1.3}
Let $ f, g, h : \I \to X $ be paths. Then
\begin{enumerate}
\item $ \br{f \cdot g} \cdot h \cong f \cdot \br{g \cdot h} $,
\item $ f \cdot \c_{f\br{1}} \cong f $ and $ \c_{f\br{0}} \cdot f \cong f $, and
\item $ f \cdot f^{-1} \cong \c_{f\br{0}} $ and $ f^{-1} \cdot f \cong \c_{f\br{1}} $.
\end{enumerate}
\end{lemma}
\begin{proof}
\hfill
\begin{enumerate}
\item $ \br{\br{f \cdot g} \cdot h}\phi = f \cdot \br{g \cdot h} $, where
$$ \phi\br{s} =
\begin{cases}
\tfrac{s}{2} & s \in \sbr{0, \tfrac{1}{2}} \\
s - \tfrac{1}{4} & s \in \sbr{\tfrac{1}{2}, \tfrac{3}{4}} \\
2s - 1 & s \in \sbr{\tfrac{3}{4}, 1}
\end{cases},
$$
so $ \br{f \cdot g} \cdot h \cong f \cdot \br{g \cdot h} $ by reparametrisation.
\item Again reparametrisation, by
$$ \psi\br{s} =
\begin{cases}
2s & s \in \sbr{0, \tfrac{1}{2}} \\
1 & s \in \sbr{\tfrac{1}{2}, 1}
\end{cases},
\qquad \chi\br{s} =
\begin{cases}
0 & s \in \sbr{0, \tfrac{1}{2}} \\
2s - 1 & s \in \sbr{\tfrac{1}{2}, 1}
\end{cases}.
$$
\item Define
$$ H\br{s, t} =
\begin{cases}
f\br{\max\cbr{1 - 2s, t}} & s \in \sbr{0, \tfrac{1}{2}} \\
f\br{\max\cbr{2s - 1, t}} & s \in \sbr{\tfrac{1}{2}, 1}
\end{cases}.
$$
$ H $ is continuous, and
$$ H\br{s, 0} = f^{-1} \cdot f, \qquad H\br{s, 1} = \c_{f\br{1}}. $$
The inverse is similar.
\end{enumerate}
\end{proof}
\begin{definition*}
A \textbf{loop} with \textbf{basepoint} $ x_0 \in X $ is a path $ f : \I \to X $ such that $ f\br{0} = f\br{1} = x_0 $.
\end{definition*}
\begin{definition*}
Denote by $ \pi_1\br{X, x_0} $ the set of \textbf{homotopy classes} $ \sbr{f} $ of loops $ f : \I \to X $ with basepoint $ x_0 $.
\end{definition*}
\begin{proposition}
$ \pi_1\br{X, x_0} $ is a group with product $ \sbr{f}\sbr{g} = \sbr{f \cdot g} $ and neutral element $ \c_{x_0} : \I \to X $, the constant path at $ x_0 $.
\end{proposition}
\begin{proof}
Follows directly from Lemma \ref{lem:1.2} and Lemma \ref{lem:1.3}.
\end{proof}
\begin{definition*}
$ \pi_1\br{X, x_0} $ is the \textbf{fundamental group} of $ X $ at $ x_0 $.
\end{definition*}
\begin{example*}
Let $ X \subseteq \RR^n $ be a convex set and $ x_0 \in X $. Then $ \pi_1\br{X, x_0} = 0 $, since $ X $ is convex, so all loops are homotopic to each other.
\end{example*}
\pagebreak
\begin{example*}
\hfill
\begin{itemize}
\item The fundamental group of a space $ X $ with the trivial topology is trivial, since $ X $ is simply-connected, because all maps $ f : \I \to X $ are continuous, so path-connected and all paths are homotopic.
\item The fundamental group of a space $ X $ with the discrete topology is trivial, since $ f : \I \to X $ is continuous implies that $ f $ is constant.
\end{itemize}
\end{example*}
Assume $ x_0, x_1 \in X $ such that $ x_0 $ and $ x_1 $ are in the same path-component of $ X $. Let $ h : \I \to X $ be a path such that $ h\br{0} = x_0 $ and $ h\br{1} = x_1 $. Define
$$ \function[\beta_h]{\pi_1\br{X, x_1}}{\pi_1\br{X, x_0}}{\sbr{f}}{\sbr{h \cdot f \cdot h^{-1}}}. $$
This is well-defined by Lemma \ref{lem:1.2}.
\begin{proposition}
$ \beta_h : \pi_1\br{X, x_1} \to \pi_1\br{X, x_0} $ is an isomorphism.
\end{proposition}
\begin{proof}
It is a homomorphism, since
$$ \beta_h\sbr{f \cdot g} = \sbr{h \cdot f \cdot g \cdot h^{-1}} = \sbr{h \cdot f \cdot h^{-1}}\sbr{h \cdot g \cdot h^{-1}} = \beta_h\sbr{f} \cdot \beta_h\sbr{g}, $$
and $ \beta_h\sbr{\c_{x_1}} = \sbr{\c_{x_1}} $. It is bijective with $ \br{\beta_h}^{-1} = \beta_{h^{-1}} $.
\end{proof}
If $ X $ is path-connected, we often write $ \pi_1\br{X} $ instead of $ \pi_1\br{X, x_0} $.
\begin{definition*}
$ X $ is \textbf{simply-connected} if it is path-connected and $ \pi_1\br{X} = 0 $.
\end{definition*}
\begin{proposition}
\label{prop:1.6}
$ X $ is simply-connected if and only if there exists a unique homotopy class of paths between any two points of $ X $.
\end{proposition}
\begin{proof}
\hfill
\begin{itemize}
\item[$ \implies $] There exists a path between any two points. Let $ f $ and $ g $ be two paths from $ x_0 $ to $ x_1 $ for $ x_0, x_1 \in X $. Then $ f \cdot g^{-1} \cong g \cdot g^{-1} $, so
$$ f \cong f \cdot g^{-1} \cdot g \cong g \cdot g^{-1} \cdot g \cong g. $$
\item[$ \impliedby $] $ X $ is path-connected. Then $ x_1 = x_0 $, so all loops at $ x_0 $ are homotopic to each other, so $ \pi_1\br{X} = 0 $.
\end{itemize}
\end{proof}
\subsubsection{The fundamental group of the circle}
The goal is to show that $ \pi_1\br{\S^1} \cong \ZZ $.
\lecture{4}{Friday}{18/01/19}
\begin{definition*}
A \textbf{covering space} of a space $ X $ is a space $ \widetilde{X} $ and a continuous map $ p : \widetilde{X} \to X $ such that for each $ x \in X $ there is an open $ x \in U \subseteq X $ such that
\begin{itemize}
\item $ p^{-1}\br{U} = \bigcup_{j \in J} \widetilde{U_j} $, where $ \widetilde{U_j} \subseteq \widetilde{X} $ is open,
\item $ \widetilde{U_i} \cap \widetilde{U_j} = \emptyset $ if $ i \ne j $, and
\item $ \eval{p}_{\widetilde{U_j}} : \widetilde{U_j} \to U $ is a homeomorphism for all $ j \in J $.
\end{itemize}
Such a $ U $ is called \textbf{evenly covered}. The $ \widetilde{U_j} $ are called \textbf{sheets}.
\end{definition*}
\begin{example*}
$$ \function[p]{\RR}{\S^1}{s}{\br{\cos 2\pi s, \sin 2\pi s}}. $$
\end{example*}
\pagebreak
\begin{definition*}
Let $ p : \widetilde{X} \to X $ be a covering space. A \textbf{lift} of a continuous map $ f : Y \to X $ is a continuous map $ \widetilde{f} : Y \to \widetilde{X} $ such that $ p\widetilde{f} = f $, so
$$
\begin{tikzcd}
& \widetilde{X} \arrow{d}{p} \\
Y \arrow{ur}{\widetilde{f}} \arrow[swap]{r}{f} & X
\end{tikzcd}.
$$
\end{definition*}
\begin{proposition}[Unique lifting property]
\label{prop:1.34}
Let $ p : \widetilde{X} \to X $ be a covering space and $ f : Y \to X $ be a continuous map. If there are two lifts $ \widetilde{f_1}, \widetilde{f_2} : Y \to \widetilde{X} $ of $ f $ such that $ \widetilde{f_1}\br{y} = \widetilde{f_2}\br{y} $ for some $ y \in Y $ and if $ Y $ is connected, then $ \widetilde{f_1} = \widetilde{f_2} $.
\end{proposition}
\begin{proof}
Let $ y \in Y $ and $ U \subseteq X $ be an evenly covered neighbourhood of $ f\br{y} $. Then
$$ p^{-1}\br{U} = \bigcup_j \widetilde{U_j}. $$
Let $ \widetilde{U_1} $ be the sheet such that $ \widetilde{f_1}\br{y} \in \widetilde{U_1} $, and let $ \widetilde{U_2} $ be the sheet such that $ \widetilde{f_2}\br{y} \in \widetilde{U_2} $. Let $ N \subseteq Y $ be open and $ y \in N $ such that $ \widetilde{f_1}\br{N} \subseteq \widetilde{U_1} $ and $ \widetilde{f_2}\br{N} \subseteq \widetilde{U_2} $. We have $ p\widetilde{f_1} = p\widetilde{f_2} $. Then $ \widetilde{f_1}\br{y} = \widetilde{f_2}\br{y} $ if and only if $ \widetilde{U_1} = \widetilde{U_2} $, if and only if $ \eval{\widetilde{f_1}}_N = \eval{\widetilde{f_2}}_N $. Let
$$ A = \cbr{y \in Y \st \widetilde{f_1}\br{y} = \widetilde{f_2}\br{y}}, $$
so $ A $ is open and $ Y \setminus A $ is open. Thus $ A \ne \emptyset $ implies that $ A = Y $.
\end{proof}
\begin{proposition}[Homotopy lifting property]
\label{prop:1.30}
Let $ p : \widetilde{X} \to X $ be a covering space and $ F : Y \times \I \to X $ be a continuous map such that there exists a lift $ \widetilde{f_0} : Y \times \cbr{0} \to \widetilde{X} $ of $ \eval{F}_{Y \times \cbr{0}} $. Then there is a unique lift $ \widetilde{F} : Y \times \I \to \widetilde{X} $ of $ F $ such that $ \eval{\widetilde{F}}_{Y \times \cbr{0}} = \widetilde{f_0} $.
\end{proposition}
\begin{proof}
Let $ y_0 \in Y $ and $ t \in \I $. There are open $ y_0 \in N_t \subseteq Y $ and $ t \in \br{a_t, b_t} \subseteq \I $ such that $ F\br{N_t \times \br{a_t, b_t}} \subseteq U \subseteq X $, where $ U \subseteq X $ is open and evenly covered. Compactness of $ \I $ implies that there exist
$$ 0 = t_0 < \dots < t_m = 1, $$
and there exists $ y_0 \in N \subseteq Y $ open such that $ F\br{N \times \sbr{t_i, t_{i + 1}}} \subseteq U_i \subseteq X $, where $ U_i \subseteq X $ is open and evenly covered. We inductively construct a lift $ \eval{\widetilde{F}}_{N \times \I} $ of $ \eval{F}_{N \times \I} $.
\begin{itemize}
\item $ \eval{\widetilde{F}}_{N \times \sbr{0, 0}} = \eval{\widetilde{f_0}}_{N \times \sbr{0, 0}} $ exists.
\item Assume the lift has been constructed on $ N \times \sbr{0, t_i} $. Let $ \widetilde{U_i} \subseteq \widetilde{X} $ be such that $ \eval{p}_{\widetilde{U_i}} : \widetilde{U_i} \to U_i $ such that $ \widetilde{F}\br{y_0, t_i} \subseteq \widetilde{U_i} $. After shrinking $ N $, may assume $ \widetilde{F}\br{N \times \cbr{t_i}} \subseteq \widetilde{U_i} $. Define $ \widetilde{F} $ on $ N \times \sbr{t_i, t_{i + 1}} $ to be composition of $ F $ with the homeomorphism $ p^{-1} : U_i \to \widetilde{U_i} $.
\end{itemize}
After finitely many steps we obtain a lift $ \widetilde{F} : N \times \I \to \widetilde{X} $, where $ y_0 \in N \subseteq Y $ is open, so for each $ y \in Y $ there is a neighbourhood $ N_y \subseteq Y $ such that $ \eval{F}_{N_y \times \I} : N_y \times \I \to X $ lifts. For all $ y \in Y $, $ \cbr{y} \times \I $ is connected and can be lifted, so Proposition \ref{prop:1.34} implies that the lift of $ N \times \I $ is unique. Thus there is a unique lift $ \widetilde{F} : Y \times \I \to \widetilde{X} $.
\end{proof}
\begin{example*}
Let $ X $ be a topological space and $ A $ be discrete. Then $ p : X \times A \to X $ is a covering space. This is the \textbf{trivial covering}. Show the unique lifting property and the homotopy lifting property for the trivial covering. \footnote{Exercise}
\end{example*}
\begin{corollary}
Let $ f : \I \to X $ be a path, $ f\br{0} = x_0 $, and $ p : \widetilde{X} \to X $ be a covering space. For each $ \widetilde{x_0} \in p^{-1}\br{x_0} $, there is a unique lift $ \widetilde{f} : \I \to \widetilde{X} $ such that $ \widetilde{f}\br{0} = \widetilde{x_0} $.
\end{corollary}
\begin{proof}
Proposition \ref{prop:1.30} for $ Y $ a point.
\end{proof}
\pagebreak
\begin{theorem}
\label{thm:1.7}
Let $ x_0 = \br{1, 0} \in \S^1 $. Then $ \pi_1\br{\S^1, x_0} $ is the infinite cyclic group generated by the homotopy class of the loop
$$ \function[\omega]{\I}{\S^1}{s}{\br{\cos 2\pi s, \sin 2\pi s}}. $$
\end{theorem}
\begin{remark*}
\hfill
\begin{itemize}
\item $ \sbr{\omega}^n = \sbr{\omega_n} $, where
$$ \omega_n\br{s} = \br{\cos 2\pi ns, \sin 2\pi ns}. $$
\item
$$ \function[p]{\RR}{\S^1}{s}{\br{\cos 2\pi s, \sin 2\pi s}} $$
is a covering space.
\item $ \omega_n $ lifts to
$$ \function[\widetilde{\omega_n}]{\I}{\RR}{s}{ns}, $$
such that $ \widetilde{\omega_n}\br{0} = 0 $ and $ \widetilde{\omega_n}\br{1} = n $.
\end{itemize}
\end{remark*}
\begin{proof}[Proof of Theorem \ref{thm:1.7}]
\hfill
\begin{itemize}
\item If $ f : \I \to \S^1 $ is a loop at $ x_0 $, then the homotopy lifting property implies that there exists a lift $ \widetilde{f} : \I \to \RR $ such that $ \widetilde{f}\br{0} = 0 $. Since $ p\br{\widetilde{f}\br{1}} = f\br{1} = x_0 $, then $ \widetilde{f}\br{1} = n $ for some $ n \in \ZZ $. Then $ \widetilde{\omega_n} : \I \to \RR $ is another path such that $ \widetilde{\omega_n}\br{0} = 0 $ and $ \widetilde{\omega_n}\br{1} = n $, so $ \widetilde{f} \cong \widetilde{\omega_n} $. Let $ F : \I \times \I \to \RR $ be a homotopy equivalence between $ \widetilde{f} $ and $ \widetilde{\omega_n} $. Then $ pF : \I \times \I \to \S^1 $ gives a homotopy between $ p\widetilde{f} = f $ and $ p\widetilde{\omega_n} = \omega_n $.
\item Let $ m, n \in \ZZ $ and assume $ \omega_m \cong \omega_n $. Let $ F : \I \times \I \to \S^1 $ be a homotopy. Then
$$ F\br{0, t} = \omega_m\br{t}, \qquad F\br{1, t} = \omega_n\br{t}, \qquad F\br{s, 0} = F\br{s, 1} = x_0, \qquad s, t \in \I. $$
The unique lifting property implies that $ \widetilde{\omega_n}, \widetilde{\omega_m} : \I \to \RR $ are unique lifts such that $ \widetilde{\omega_n}\br{0} = 0 = \widetilde{\omega_m}\br{0} $. The homotopy lifting property implies that $ F $ lifts uniquely to a homotopy $ \widetilde{F} : \I \times \I \to \RR $ between $ \widetilde{\omega_n} $ and $ \widetilde{\omega_m} $, and $ \widetilde{F}\br{s, 1} \in \ZZ $ for all $ s \in \I $. Thus $ \widetilde{F}\br{s, 1} = n = m $, so $ \omega_m \cong \omega_n $ if and only if $ n = m $.
\end{itemize}
\end{proof}
\lecture{5}{Tuesday}{22/01/19}
Lecture 5 is a problems class.
\lecture{6}{Wednesday}{23/01/19}
\begin{theorem}
Every non-constant polynomial $ p \in \CC\sbr{z} $ has a root in $ \CC $.
\end{theorem}
\begin{proof}
May assume $ p\br{z} = z^n + a_1z^{n - 1} + \dots + a_n $. Assume $ p $ has no roots in $ \CC $. For each $ r \in \RR_{\ge 0} $ we obtain a loop
$$ \function[f_r]{\I}{\CC}{s}{\dfrac{p\br{re^{2\pi is}} / p\br{r}}{\abs{p\br{re^{2\pi is}} / p\br{r}}}}, $$
so $ \abs{f_r\br{s}} = 1 $. Then $ f_r\br{0} = 1 $ and $ f_r\br{1} = 1 $, so $ f_r $ is a loop based at $ 1 $. Then $ f_0 $ is the constant loop at $ 1 $, and $ f_r\br{s} $ depends continuously on $ r $, so $ f_r \cong f_0 $ for all $ r \in \RR_{\ge 0} $ and $ \sbr{f_r} = \sbr{f_0} = 0 \in \pi_1\br{\S^1} $. Fix $ r \in \RR_{\ge 0} $ such that $ r > 1 $ and $ r > \abs{a_1} + \dots + \abs{a_n} $. For $ \abs{z} = r $ we have
$$ \abs{z^n} > \br{\abs{a_1} + \dots + \abs{a_n}}\abs{z^{n - 1}} \ge \abs{a_1z^{n - 1}} + \dots + \abs{a_n} \ge \abs{a_1z^{n - 1} + \dots + a_n}. $$
Hence, for $ 0 \le t \le 1 $ the polynomial
$$ p_t\br{z} = z^n + t\br{a_1z^{n - 1} + \dots + a_n} $$
has no root $ z $ with $ \abs{z} = r $. Define
$$ F_r\br{t, s} = \dfrac{p_t\br{re^{2\pi is}} / p_t\br{r}}{\abs{p_t\br{re^{2\pi is}} / p_t\br{r}}}. $$
Then $ F_r\br{0, s} = \omega_n\br{s} $ and $ F_r\br{1, s} = f_r\br{s} $, so $ \sbr{\omega_n} = \sbr{f_r} = 0 \in \pi_1\br{\S^1} $. Theorem \ref{thm:1.7} implies that $ n = 0 $, so $ p $ is constant.
\end{proof}
See Hatcher Theorem 1.9 and Theorem 1.10 for more applications.
\pagebreak
\begin{proposition}
Let $ X $ and $ Y $ be path-connected topological spaces, $ x_0 \in X $, and $ y_0 \in Y $. Then
$$ \pi_1\br{X \times Y, \br{x_0, y_0}} \cong \pi_1\br{X, x_0} \times \pi_1\br{Y, y_0}. $$
\end{proposition}
\begin{proof}
A map
$$ \function[f]{Z}{X \times Y}{z}{\br{g\br{z}, h\br{z}}} $$
is continuous if and only if $ g : Z \to X $ and $ h : Z \to Y $ are continuous. For $ Z = \I $,
$$ \correspondence{\text{loops in} \ X \times Y \ \text{based} \ \br{x_0, y_0}}{\text{loops in} \ X \ \text{based} \ x_0 \ \} \times \{ \ \text{loops in} \ Y \ \text{based} \ y_0}. $$
Two loops
$$ \function[f_1]{\I}{X \times Y}{s}{\br{g_1\br{s}, h_1\br{s}}}, \qquad \function[f_2]{\I}{X \times Y}{s}{\br{g_2\br{s}, h_2\br{s}}} $$
are homotopic if and only if $ g_1 \cong g_2 $ and $ h_1 \cong h_2 $, so there is a bijection
$$ \pi_1\br{X \times Y, \br{x_0, y_0}} \cong \pi_1\br{X, x_0} \times \pi_1\br{Y, y_0}. $$
Then $ f_1 \cdot f_2 = \br{g_1 \cdot g_2, h_1 \cdot h_2} $ and the constant loop is mapped to the constant loop, so this is also a group isomorphism.
\end{proof}
\begin{example*}
The torus $ \S^1 \times \S^1 $ has
$$ \pi_1\br{\S^1 \times \S^1} \cong \pi_1\br{\S^1} \times \pi_1\br{\S^1} \cong \ZZ^2. $$
\end{example*}
\subsubsection{Induced homomorphisms}
Let $ X $ and $ Y $ be topological spaces, $ x_0 \in X $, and $ \phi : X \to Y $. An observation is that $ \phi $ induces a homomorphism
$$ \function[\phi_*]{\pi_1\br{X, x_0}}{\pi_1\br{Y, \phi\br{x_0}}}{\sbr{f}}{\sbr{\phi f}}. $$
$ \phi_* $ is well-defined, since if $ f_t $ is a homotopy between the loops $ f_0 $ and $ f_1 $ based at $ x_0 $, then $ \phi f_t $ is a homotopy of loops between $ \phi f_0 $ and $ \phi f_1 $. Moreover, $ \phi\br{f \cdot g} = \br{\phi f} \cdot \br{\phi g} $ and $ \phi $ maps the constant path at $ x_0 $ to the constant path at $ \phi\br{x_0} $, so $ \phi $ is a homomorphism.
\begin{proposition}
\hfill
\begin{enumerate}
\item Let $ \psi : X \to Y $ and $ \phi : Y \to Z $ be continuous maps between topological spaces, $ x_0 \in X $, and
$$ \psi_* : \pi_1\br{X, x_0} \to \pi_1\br{Y, \psi\br{x_0}}, \qquad \phi_* : \pi_1\br{Y, \psi\br{x_0}} \to \pi_1\br{Z, \phi\psi\br{x_0}}, $$
$$ \br{\phi\psi}_* : \pi_1\br{X, x_0} \to \pi_1\br{Z, \phi\psi\br{x_0}}. $$
Then $ \br{\phi\psi}_* = \phi_*\psi_* $.
\item Let $ \id_X : X \to X $ be the identity then
$$ \br{\id_X}_* : \pi_1\br{X, x_0} \to \pi_1\br{X, x_0} $$
is the identity.
\end{enumerate}
\end{proposition}
\begin{proof}
\hfill
\begin{enumerate}
\item Let $ f : \I \to X $ be a loop at $ x_0 $, then
$$ \br{\phi\psi}_*\br{\sbr{f}} = \sbr{\br{\phi\psi}f} = \sbr{\phi\br{\psi f}} = \phi_*\br{\sbr{\psi f}} = \phi_*\psi_*\br{\sbr{f}}. $$
\item $ \br{\id_X}_*\br{\sbr{f}} = \sbr{\id_Xf} = \sbr{f} $.
\end{enumerate}
\end{proof}
These two observations yield in particular that if $ \phi : X \to Y $ is a homeomorphism with inverse $ \psi : Y \to X $, then
$$ \phi_* : \pi_1\br{X, x_0} \to \pi_1\br{Y, \phi\br{x_0}} $$
is an isomorphism with inverse $ \psi_* $.
\pagebreak
\lecture{7}{Friday}{25/01/19}
\begin{proposition}
\label{prop:1.18}
Let $ \phi : X \to Y $ be a homotopy equivalence. Then
$$ \phi_* : \pi_1\br{X, x_0} \to \pi_1\br{Y, \phi\br{x_0}} $$
is an isomorphism for all $ x_0 \in X $.
\end{proposition}
Recall that if $ x_0, x_1 \in X $ and $ h : \I \to X $ is a path such that $ h\br{0} = x_0 $ and $ h\br{1} = x_1 $, then we obtain an isomorphism
$$ \function[\beta_h]{\pi_1\br{X, x_1}}{\pi_1\br{X, x_0}}{\sbr{f}}{\sbr{h \cdot f \cdot h^{-1}}}. $$
\begin{lemma}
\label{lem:1.19}
Let $ \phi_t : X \to Y $ be a homotopy and $ x_0 \in X $. Define the path
$$ \function[h]{\I}{Y}{s}{\phi_s\br{x_0}}, \qquad h\br{0} = \phi_0\br{x_0}, \qquad h\br{1} = \phi_1\br{x_0}. $$
Then $ \phi_{0*} = \beta_h\phi_{1*} $, that is the following diagram commutes.
$$
\begin{tikzcd}
& \pi_1\br{Y, \phi_1\br{x_0}} \arrow{dd}{\beta_h}[swap]{\sim} \\
\pi_1\br{X, x_0} \arrow{ur}{\phi_{1*}} \arrow[swap]{dr}{\phi_{0*}} & \\
& \pi_1\br{Y, \phi_0\br{x_0}}
\end{tikzcd}.
$$
\end{lemma}
\begin{proof}
For $ t \in \I $, define the path
$$ \function[h_t]{\I}{X}{s}{h\br{ts}}, \qquad h_t\br{0} = \phi_0\br{x_0}, \qquad h_t\br{1} = h\br{t} = \phi_t\br{x_0}. $$
Let $ f $ be a loop at $ x_0 $. Define
$$ F_t = h_t \cdot \br{\phi_tf} \cdot h_t^{-1}. $$
Then $ F_t $ is a loop at $ \phi_0\br{x_0} $, which is continuous in $ t $. So $ F_t $ is a homotopy of loops between
$$ F_0 = h_0 \cdot \br{\phi_0f} \cdot h_0^{-1} \cong \phi_0f, \qquad F_1 = h_1 \cdot \br{\phi_1f} \cdot h_1^{-1} = h \cdot \br{\phi_1f} \cdot h^{-1}. $$
Hence
$$ \phi_{0*}\br{\sbr{f}} = \sbr{\phi_0f} = \sbr{h \cdot \br{\phi_1f} \cdot h^{-1}} = \beta_h\br{\sbr{\phi_1f}} = \beta_h\phi_{1*}\br{\sbr{f}}. $$
\end{proof}
Lemma \ref{lem:1.19} implies in particular the following.
\begin{corollary}
If $ \psi : X \to X $ is continuous and $ \psi \cong \id_X $, then
$$ \psi_* : \pi_1\br{X, x_0} \to \pi_1\br{X, \psi\br{x_0}} $$
is an isomorphism for all $ x_0 \in X $.
\end{corollary}
\begin{proof}
By Lemma \ref{lem:1.19} there is a path $ h $ from $ \psi\br{x_0} $ to $ x_0 $ such that
$$
\begin{tikzcd}
& \pi_1\br{X, x_0} \arrow{dd}{\beta_h}[swap]{\sim} \\
\pi_1\br{X, x_0} \arrow{ur}{\br{\id_X}_*} \arrow[swap]{dr}{\psi_*} & \\
& \pi_1\br{X, \psi\br{x_0}}
\end{tikzcd},
$$
so $ \psi_* = \beta_h $ hence an isomorphism.
\end{proof}
\pagebreak
\begin{proof}[Proof of Proposition \ref{prop:1.18}]
Let $ \phi : X \to Y $ be a homotopy equivalence. Let $ \psi : Y \to X $ be a homotopy inverse of $ \phi $, that is $ \phi\psi \cong \id_Y $ and $ \psi\phi \cong \id_X $. Then
$$ \pi_1\br{X, x_0} \xrightarrow{\phi_*} \pi_1\br{Y, \phi\br{x_0}} \xrightarrow{\psi_*} \pi_1\br{X, \psi\phi\br{x_0}} \xrightarrow{\phi_*} \pi_1\br{Y, \psi\phi\psi\br{x_0}}. $$
Have to show that $ \phi_* $ is bijective. The observation above implies that $ \br{\psi\phi}_* = \psi_*\phi_* $ is an isomorphism, so $ \phi_* $ is injective and $ \psi_* $ is surjective. Similarly $ \br{\phi\psi}_* = \phi_*\psi_* $ is an isomorphism, so $ \psi_* $ is injective and $ \phi_* $ is surjective.
\end{proof}
\begin{lemma}
\label{lem:1.15}
Let $ X $ be a topological space and $ x_0 \in X $. Assume
$$ X = \bigcup_{\alpha \in \Lambda} A_\alpha, $$
such that
\begin{itemize}
\item the $ A_\alpha $ are all open and path-connected,
\item $ x_0 \in A_\alpha $ for all $ \alpha \in \Lambda $, and
\item all the intersections $ A_\alpha \cap A_\beta $ are path-connected for all $ \alpha, \beta \in \Lambda $.
\end{itemize}
If $ f $ is a loop in $ X $ at $ x_0 $, then we can write
$$ \sbr{f} = \sbr{h_1} \dots \sbr{h_m}, $$
such that the $ h_i $ are loops at $ x_0 $, and each contained in a single $ A_{\alpha_i} $.
\end{lemma}
\begin{proof}
$ f $ is continuous, so for all $ s \in \I $ there is an open neighbourhood $ V_s $ such that $ f\br{V_s} $ such that $ f\br{V_s} \subseteq A_\alpha $ for some $ \alpha $. We can choose $ V_s $ to be an interval $ \br{a_s, b_s} $ such that $ f\br{\sbr{a_s, b_s}} \subseteq A_\alpha $. Then $ \I $ is compact, so a finite number of such intervals cover $ \I $, so there is a partition
$$ 0 = s_0 < \dots < s_m = 1, $$
such that $ f\br{\sbr{s_{i - 1}, s_i}} \subseteq A_{\alpha_i} $ for some $ \alpha_i $. Let $ f_i $ be the path obtained by restricting $ f $ to $ \sbr{s_{i - 1}, s_i} $, and rescaling. Then $ f \cong f_1 \cdot \dots \cdot f_m $ for $ f_i \subseteq A_{\alpha_i} $ and $ A_{\alpha_i} \cap A_{\alpha_j} $ is path-connected. Let $ g_i $ be a path from $ x_0 $ to $ f\br{s_i} $ in $ A_{\alpha_i} \cap A_{\alpha_{i + 1}} $. Let $ g_0 $ and $ g_m $ be the constant loops at $ x_0 $. Then $ h_i = g_{i - 1} \cdot f_i \cdot g_i^{-1} $ is a loop based at $ x_0 $ and $ h_i \subseteq A_{\alpha_i} $. Thus
$$ f \cong \br{g_0 \cdot f_1 \cdot g_1^{-1}} \cdot \dots \cdot \br{g_{m - 1} \cdot f_m \cdot g_m^{-1}}, $$
so $ \sbr{f} = \sbr{h_1} \dots \sbr{h_m} $.
\end{proof}
\lecture{8}{Tuesday}{29/01/19}
\begin{example*}
M\"obius strip $ M $ deformation retracts to $ \S^1 $. Thus $ \phi : M \to \S^1 $ is a homotopy equivalence, so $ \pi_1\br{M} \cong \pi_1\br{\S^1} \cong \ZZ $.
\end{example*}
\begin{example*}
There is no deformation retraction of $ \S^1 $ to a point $ p \in \S^1 $ because $ \pi_1\br{\S^1} \ncong \pi_1\br{p} $.
\end{example*}
\begin{example*}
There is no retraction of the disc $ \D^2 $ to its boundary $ \S^1 \subseteq \D^2 $. Assume there is a retraction $ r : \D^2 \to \S^1 $, consider the embedding $ i : \S^1 \hookrightarrow \D^2 $. Then $ ri = \id_{\S^1} $. Thus
$$
\begin{tikzcd}[row sep=tiny]
\pi_1\br{\S^1} \arrow{r}{i_*} \arrow[cong]{d} & \pi_1\br{\D^2} \arrow{r}{r_*} \arrow[cong]{d} & \pi_1\br{\S^1} \arrow[cong]{d} \\
\ZZ & 0 & \ZZ
\end{tikzcd},
$$
so $ r_*i_*\br{\pi_1\br{\S^1}} = 0 $ but $ r_*i_* = \br{ri}_* = \id_{\pi_1\br{\S^1}} $, a contradiction.
\end{example*}
\begin{theorem}[Brouwer fixed point theorem]
Let $ h : \D^2 \to \D^2 $ be a continuous map. Then $ h $ has a fixed point, that is there exists $ x \in \D^2 $ such that $ h\br{x} = x $.
\end{theorem}
\begin{proof}
Assume $ h\br{x} \ne x $ for all $ x \in \D^2 $. Define $ r : \D^2 \to \S^1 $ by defining $ r\br{x} $ to be the intersection of the ray starting at $ h\br{x} $ towards $ x $ with $ \S^1 $. Then $ r $ is continuous, and if $ x \in \S^1 $, then $ r\br{x} = x $, so $ r $ is a retraction, a contradiction.
\end{proof}
\pagebreak
Lemma \ref{lem:1.15} implies that if $ U_1, U_2 \subseteq X $ are open and path-connected such that $ U_1 \cup U_2 = X $ and $ U_1 \cap U_2 $ is path-connected and $ x_0 \in U_1 \cap U_2 $, then every $ \sbr{f} \in \pi_1\br{X, x_0} $ can be factorised as
$$ \sbr{f} = \sbr{g_1}\sbr{h_1} \dots \sbr{g_n}\sbr{h_n}, $$
such that the $ g_i $ are loops at $ x_0 $ contained in $ U_1 $ and the $ h_i $ are loops at $ x_0 $ contained in $ U_2 $. In other words, $ i_1 : U_1 \hookrightarrow X $ and $ i_2 : U_2 \hookrightarrow X $, so
$$ i_{1*} : \pi_1\br{U_1, x_0} \to \pi_1\br{X, x_0}, \qquad i_{2*} : \pi_1\br{U_2, x_0} \to \pi_1\br{X, x_0}. $$
Lemma \ref{lem:1.15} implies that $ i_{1*}\br{\pi_1\br{U_1, x_0}} \cup i_{2*}\br{\pi_1\br{U_2, x_0}} $ generate $ \pi_1\br{X, x_0} $.
\begin{proposition}
$ \pi_1\br{\S^n} = 0 $ if $ n \ge 2 $.
\end{proposition}
\begin{proof}
Let
$$ U_1 = \S^n \setminus \cbr{\br{1, 0, \dots, 0}}, \qquad U_2 = \S^n \setminus \cbr{\br{-1, 0, \dots, 0}}. $$
Then $ U_1 \cong \RR^n $ and $ U_2 \cong \RR^n $, by stereographic projection. Then $ U_1 \cup U_2 = \S^n $ and $ U_1 \cap U_2 $ is path-connected. Let $ x_0 \in U_1 \cap U_2 $. Then $ \pi_1\br{U_1, x_0} = 0 $ and $ \pi_1\br{U_2, x_0} = 0 $, so Lemma \ref{lem:1.15} implies that $ \pi_1\br{\S^n, x_0} $.
\end{proof}
\subsection{Seifert-van Kampen theorem}
\subsubsection{Free products with amalgamation}
\begin{definition*}
If $ S $ is a set, then $ \F_S $ is the \textbf{free group} on $ S $. We can write any group $ G $ as a quotient of some free group $ \F_S $, $ G = \F_S / \abr{\abr{R}} $, where $ \abr{\abr{R}} $ is the \textbf{normal closure} of $ R \subseteq \F_S $, the smallest normal subgroup of $ \F_S $ containing $ R $. We write $ G = \abr{S \st R} $. This is called a \textbf{presentation} of $ G $.
\end{definition*}
Let $ G_0, G_1, G_2 $ be groups, and $ f_1 : G_0 \to G_1 $ and $ f_2 : G_0 \to G_2 $ be homomorphisms.
\begin{definition*}
A group $ H $ together with homomorphisms $ h_1 : G_1 \to H $ and $ h_2 : G_2 \to H $ such that $ h_1f_1 = h_2f_2 $ is an \textbf{amalgamated product} of $ G_1 $ and $ G_2 $ over $ G_0 $ if it satisfies the following universal property. For every group $ G $ and all homomorphisms $ h_1' : G_1 \to G $ and $ h_2' : G_2 \to G $ such that $ h_1'f_1 = h_2'f_2 $, there exists a unique homomorphism $ \alpha : H \to G $ such that $ h_1' = \alpha h_1 $ and $ h_2' = \alpha h_2 $, so
$$
\begin{tikzcd}
G_0 \arrow{r}{f_1} \arrow[swap]{d}{f_2} & G_1 \arrow{d}{h_1} \arrow[bend left=30]{ddr}{h_1'} & \\
G_2 \arrow[swap]{r}{h_2} \arrow[bend right=30, swap]{drr}{h_2'} & H \arrow[dashed]{dr}{\exists !\alpha} & \\
& & G
\end{tikzcd}.
$$
\end{definition*}
\begin{theorem}
Given $ f_1 : G_0 \to G_1 $ and $ f_2 : G_0 \to G_2 $. Then there exists an amalgamated product, unique up to isomorphism. We denote it by
$ G_1 \underset{G_0}{*} G_2 $.
\end{theorem}
\begin{proof}
Worksheet $ 2 $.
\end{proof}
\lecture{9}{Wednesday}{30/01/19}
$ G_0 = \cbr{\id} $ is the \textbf{free product}. We write $ G_1 * G_2 $ instead of $ G_1 \underset{\cbr{\id}}{*} G_2 $. Let $ G_1 = \abr{S_1 \st R_1} $ and $ G_2 = \abr{S_2 \st R_2} $. Then $ G_1 * G_2 = \abr{S_1 \sqcup S_2 \st R_1 \cup R_2} $, with injections $ G_i \hookrightarrow G_1 * G_2 $ for $ i = 1, 2 $. More generally,
$$ G_1 \underset{G_0}{*} G_2 \cong G_1 * G_2 / N. $$
where $ N $ is the normal closure of the set
$$ \cbr{f_1\br{g}f_2\br{g}^{-1} \st g \in G_0} \subseteq G_1 * G_2. $$
\pagebreak
\subsubsection{The Seifert-van Kampen theorem}
\begin{theorem}[Seifert-van Kampen]
\label{thm:seifertvankampen}
Let $ X $ be a topological space and $ U_1, U_2 \subseteq X $ be open and path-connected such that $ X = U_1 \cup U_2 $ and $ U_1 \cap U_2 $ is path-connected and let $ x_0 \in U_1 \cap U_2 $. Then
$$ \pi_1\br{X, x_0} \cong \pi_1\br{U_1, x_0} \underset{\pi_1\br{U_1 \cap U_2, x_0}}{*} \pi_2\br{U_2, x_0} \cong \pi_1\br{U_1, x_0} * \pi_1\br{U_2, x_0} / N, $$
where $ N $ is the normal closure of the set
$$ \cbr{j_{1*}\br{\omega}j_{2*}\br{\omega}^{-1} \st \omega \in \pi_1\br{U_1 \cap U_2, x_0}}, $$
and $ j_i : U_1 \cap U_2 \hookrightarrow U_i $, so
$$
\begin{tikzcd}
U_1 \cap U_2 \arrow[hookrightarrow]{r}{i_1} \arrow[hookrightarrow, swap]{d}{i_2} & U_1 \arrow[hookrightarrow]{d}{j_1} \\
U_2 \arrow[hookrightarrow, swap]{r}{j_2} & X
\end{tikzcd}
\qquad \implies \qquad
\begin{tikzcd}
\pi_1\br{U_1 \cap U_2, x_0} \arrow{r}{i_{1*}} \arrow[swap]{d}{i_{2*}} & \pi_1\br{U_1, x_0} \arrow{d}{j_{1*}} \\
\pi_1\br{U_2, x_0} \arrow[swap]{r}{j_{2*}} & \pi_1\br{U_1, x_0} \underset{\pi_1\br{U_1 \cap U_2, x_0}}{*} \pi_2\br{U_2, x_0}
\end{tikzcd}.
$$
\end{theorem}
\begin{proof}[Proof of Theorem \ref{thm:seifertvankampen}]
Appendix A.1.
\end{proof}
\lecture{10}{Friday}{01/02/19}
\begin{theorem}[Seifert-van Kampen, strong version]
Let $ X $ be a path-connected topological space such that
\begin{itemize}
\item $ X = \bigcup_\alpha A_\alpha $,
\item $ A_\alpha, A_\alpha \cap A_\beta, A_\alpha \cap A_\beta \cap A_\gamma $ are open and path-connected for all $ \alpha, \beta, \gamma $, and
\item $ x_0 \in \bigcap_\alpha A_\alpha $.
\end{itemize}
Then
$$ \pi_1\br{X, x_0} \cong \underset{\alpha}{*} \pi_1\br{A_\alpha, x_0} / N, $$
where $ N \subseteq \underset{\alpha}{*} \pi_1\br{A_\alpha, x_0} $ is the normal closure of the set
$$ \cbr{\br{i_{\alpha\beta}}_*\br{\omega}\br{i_{\beta\alpha}}_*\br{\omega}^{-1} \st \omega \in \pi_1\br{A_\alpha \cap A_\beta}}, $$
and $ i_{\alpha\beta} : A_\alpha \cap A_\beta \hookrightarrow A_\alpha $ is the inclusion.
\end{theorem}
\begin{example*}
Let $ \S^1 \vee \S^1 $ be the wedge product. Fix $ x \in \S^1 $ and $ y \in \S^1 $. Then
$$
\begin{tikzpicture}
\draw (-3.5, 0) node{$ \S^1 \vee \S^1 = \S^1 \sqcup \S^1 / x \sim y = $};
\fill (0, 0) circle (0.1);
\draw (-0.5, 0) circle (0.5) node[above]{$ b $};
\draw (0.5, 0) circle (0.5) node[above]{$ a $};
\end{tikzpicture}.
$$
Let
$$
\begin{tikzpicture}
\draw (-1.5, 0) node{$ A = $};
\fill (0, 0) circle (0.1);
\draw (-0.5, 0) circle (0.5);
\draw (0.5, 0.5) arc (90:270:0.5);
\end{tikzpicture},
\qquad
\begin{tikzpicture}
\draw (-1, 0) node{$ B = $};
\fill (0, 0) circle (0.1);
\draw (-0.5, 0.5) arc (90:-90:0.5);
\draw (0.5, 0) circle (0.5);
\end{tikzpicture},
\qquad
\begin{tikzpicture}
\draw (-1.5, 0) node{$ A \cap B = $};
\fill (0, 0) circle (0.1);
\draw (-0.5, 0.5) arc (90:-90:0.5);
\draw (0.5, 0.5) arc (90:270:0.5);
\end{tikzpicture}.
$$
Then $ \pi_1\br{A} \cong \abr{b} \cong \ZZ $, $ \pi_1\br{B} \cong \abr{a} \cong \ZZ $, and $ \pi_1\br{A \cap B} = \cbr{\id} $, and $ A, B, A \cap B $ are open and path-connected. Van Kampen implies that
$$ \pi_1\br{\S^1 \vee \S^1} \cong \pi_1\br{A} * \pi_1\br{B} \cong \ZZ * \ZZ \cong \F_{\cbr{a, b}}. $$
More generally, let $ X = \S_{a_1}^1 \vee \dots \vee \S_{a_n}^1 $. Induction implies that
$$ \pi_1\br{X} = \ZZ * \dots * \ZZ \cong \F_{\cbr{a_1, \dots, a_n}}. $$
Similarly, let $ X = \bigvee_{\alpha \in \Lambda} \S_\alpha^1 $. Strong version of van Kampen implies that
$$ \pi_1\br{X} = \underset{\alpha \in \Lambda}{*} \ZZ = \F_\Lambda. $$
\end{example*}
\pagebreak
\begin{example*}
Let $ T $ be a torus and $ x_0 \in T $. Let
$$ A = T \setminus \cbr{\text{small closed disc} \ D}, \qquad B = \cbr{\text{open set that contains} \ D \ \text{and} \ x_0}. $$
\begin{itemize}
\item $ A $ is homotopy equivalent to $ \S^1 \vee \S^1 $, so $ \pi_1\br{A} \cong \F_{\cbr{a, b}} $.
\item $ B $ is homeomorphic to $ \D^2 $, so $ \pi_1\br{B} = \cbr{\id} $.
\item $ A \cap B $ is homotopy equivalent to $ \S^1 $, so $ \pi_1\br{A \cap B} \cong \ZZ $.
\end{itemize}
Then $ A, B, A \cap B $ are open and path-connected. Van Kampen implies that
$$ \pi_1\br{T} \cong \pi_1\br{A} / \abr{\abr{i_*\br{\pi_1\br{A \cap B}}}}, $$
where $ i : A \cap B \hookrightarrow A $. Then
$$ \function[i_*]{\pi_1\br{A \cap B} = \abr{\omega}}{\pi_1\br{A}}{\omega}{aba^{-1}b^{-1}}, $$
so
$$ \pi_1\br{T} \cong \F_{\cbr{a, b}} / \abr{\abr{aba^{-1}b^{-1}}} = \abr{a, b \st aba^{-1}b^{-1}} \cong \ZZ^2. $$
\end{example*}
\subsubsection{Applications to CW-complexes}
Let $ X $ be a path-connected topological space. Let $ Y $ be the space obtained by attaching $ 2 $-cells $ \cbr{e_\alpha^2} $ to $ X $ along maps $ \phi_\alpha : \partial \D^2 = \S^1 \to X $. Consider the loops
$$ \function[\phi_\alpha']{\I}{X}{s}{\phi_\alpha\br{\cos 2\pi s, \sin 2\pi s}}, $$
based at $ \phi_\alpha'\br{0} $. Let $ \gamma_\alpha $ be a path from $ x_0 $ to $ \phi_\alpha'\br{0} $ for each $ \alpha $. Then $ \gamma_\alpha \cdot \phi_\alpha \cdot \gamma_\alpha^{-1} $ is a loop at $ x_0 $. After attaching $ e_\alpha^2 $, the loop $ \gamma_\alpha \cdot \phi_\alpha \cdot \gamma_\alpha^{-1} $ is homotopic to the constant loop at $ x_0 $. Let $ N \subseteq \pi_1\br{X, x_0} $ be the normal closure of all the elements of the form $ \sbr{\gamma_\alpha \cdot \phi_\alpha \cdot \gamma_\alpha^{-1}} $. The inclusion $ i : X \hookrightarrow Y $ yields
$$ i_* : \pi_1\br{X, x_0} \to \pi_1\br{Y, x_0}, $$
and $ N \subseteq \Ker i_* $.
\begin{proposition}
\label{prop:1.26}
This inclusion $ i : X \hookrightarrow Y $ induces a surjection
$$ i_* : \pi_1\br{X, x_0} \to \pi_1\br{Y, x_0}, $$
and $ \Ker i_* = N $, so
$$ \pi_1\br{Y, x_0} \cong \pi_1\br{X, x_0} / N. $$
\end{proposition}
\begin{proof}
Construct a space $ Z $ from $ Y $ by attaching a strip $ \I \times \I $ to $ Y $ by identifying the lower edge $ \I \times \cbr{0} $ with the path $ \gamma_\alpha $ and the right edge $ \cbr{1} \times \I $ with an arch on $ e_\alpha^2 $. Attach all the left edges of the strips with each other. Then $ Z $ deformation retracts to $ Y $. Choose a point $ y_\alpha \in e_\alpha^2 $ for each $ \alpha $, such that $ y_\alpha $ is not contained in $ X $ or in the attached strip. Let
$$ A = Z \setminus \bigcup_\alpha \cbr{y_\alpha}, \qquad B = Z \setminus X. $$
\begin{itemize}
\item $ A $ deformation retracts to $ X $.
\item $ B $ is homotopy equivalent to a point.
\item $ A \cap B $ is homotopy equivalent to
$$
\begin{tikzpicture}
\draw (-5, 0) node{$ \cbr{\text{paths} \ \gamma_\alpha \ \text{from} \ x_0 \ \text{to loops} \ \phi_\alpha'} = $};
\fill (0, 0) circle (0.1) node[above]{$ x_0 $};
\draw (0, 0) to node[above]{$ \gamma_\alpha $} (-1, 0);
\draw (0, 0) to node[above]{$ \gamma_\alpha $} (1, 0);
\draw (-1.5, 0) circle (0.5) node[above]{$ \phi_\alpha' $};
\draw (1.5, 0) circle (0.5) node[above]{$ \phi_\alpha' $};
\end{tikzpicture}.
$$
\end{itemize}
Then $ A, B, A \cap B $ are open and path-connected. Van Kampen implies that
$$ \pi_1\br{Y} \cong \pi_1\br{Z} = \pi_1\br{A} / \abr{\abr{j_*\br{\pi_1\br{A \cap B}}}}, $$
where $ j : A \cap B \hookrightarrow A $ is the inclusion. So $ \abr{\abr{j_*\br{\pi_1\br{A \cap B}}}} $ is exactly $ N $. Thus $ \pi_1\br{A} = \pi_1\br{X} $.
\end{proof}
\pagebreak
\lecture{11}{Tuesday}{05/02/19}
\begin{corollary}
For every group $ G $ there exists a two-dimensional CW-complex $ X_G $ such that $ \pi_1\br{X_G} = G $.
\end{corollary}
\begin{proof}
Let $ G = \abr{\cbr{g_\alpha} \st \cbr{r_\beta}} $ be a presentation of $ G $, that is $ G = \F_{\cbr{g_\alpha}} / \abr{\abr{\cbr{r_\beta}}} $. Seen last time that $ \pi_1\br{\bigvee_{g_\alpha} \S_{g_\alpha}^1} = \F_{\cbr{g_\alpha}} $. Each word $ r_\beta $ defines a loop in $ \bigvee_{g_\alpha} \S_{g_\alpha}^1 $. Attach $ 2 $-cells to $ \bigvee_{g_\alpha} \S_{g_\alpha}^1 $ along the loops defined by the relations $ \cbr{r_\beta} $. Call this new CW-complex $ Y $. Proposition \ref{prop:1.26} implies that
$$ \pi_1\br{Y, x_0} \cong \pi_1\br{X, x_0} / \abr{\abr{\cbr{r_\beta}}} \cong \F_{\cbr{g_\alpha}} / \abr{\abr{\cbr{r_\beta}}} \cong G. $$
\end{proof}
\begin{remark*}
Let $ X = \bigcup_n X^n $ be a CW-complex, path-connected. Proposition \ref{prop:1.26} can be used to show the following two facts.
\begin{itemize}
\item The inclusion $ X^1 \hookrightarrow X $ induces a surjective homomorphism $ \pi_1\br{X^1} \to \pi_1\br{X} $.
\item The inclusion $ X^2 \hookrightarrow X $ induces an isomorphism $ \pi_1\br{X^2} \to \pi_1\br{X} $.
\end{itemize}
\end{remark*}
\subsection{Covering spaces}
\subsubsection{Lifting properties}
Let $ X $ be a topological space. Recall that a covering space is $ p : \widetilde{X} \to X $ such that each $ x \in X $ has an open neighbourhood $ U $ such that
$$ p^{-1}\br{U} = \bigcup_\alpha \widetilde{U_\alpha}, $$
where $ U_\alpha $ are pairwise disjoint and $ \eval{p}_{\widetilde{U_\alpha}} : \widetilde{U_\alpha} \to U $ is a homeomorphism for all $ \alpha $.
\begin{example*}
$$
\begin{tikzpicture}
\draw (-5, 0) node{$ \function{\RR}{\S^1}{s}{\br{\cos 2\pi s, \sin 2\pi s}}, \quad \function{\S^1}{\S^1}{z}{z^n}, $};
\draw (0, 0) circle (0.5);
\fill (0.5, 0) circle (0.1);
\draw (1, 0) circle (0.5);
\fill (1.5, 0) circle (0.1);
\draw (2, 0) circle (0.5);
\draw (3.5, 0) node{$ \to \S^1 \vee \S^1 = $};
\draw (5, 0) circle (0.5);
\fill (5.5, 0) circle (0.1);
\draw (6, 0) circle (0.5);
\end{tikzpicture}.
$$
\end{example*}
Let $ f : Y \to X $ be a continuous map. A lift of $ f $ is a continuous map $ \widetilde{f} : Y \to \widetilde{X} $ such that $ p\widetilde{f} = f $, where $ p : \widetilde{X} \to X $ is a covering space. Let $ Y $ be connected.
\begin{itemize}
\item \textbf{Unique lifting property} states that if two lifts $ \widetilde{f_1} $ and $ \widetilde{f_2} $ of $ f $ coincide at one point, then they coincide on all of $ Y $.
\item \textbf{Homotopy lifting property} states that if $ f_t : Y \to X $ is a homotopy and $ \widetilde{f_0} : Y \to \widetilde{X} $ is a lift of $ f_0 $ then there exists a unique homotopy $ \widetilde{f_t} : Y \to \widetilde{X} $ of $ \widetilde{f_0} $ that lifts $ f_t $.
\end{itemize}
\begin{remark*}
\hfill
\begin{itemize}
\item If $ Y $ is a point, this is called the \textbf{path lifting property}. Let $ f : \I \to X $ be a path with $ f\br{0} = x_0 $. If $ \widetilde{x_0} \in p^{-1}\br{x_0} $, then there is a unique path $ \widetilde{f} : \I \to \widetilde{X} $ lifting $ f $ and starting at $ \widetilde{x_0} $.
\item In particular, the lift of a constant path is constant.
\item This implies in particular that the lift of a homotopy of paths is again a homotopy of paths. The endpoints $ f_t\br{0} $ and $ f_t\br{1} $ define constant paths as $ t $ varies.
\end{itemize}
\end{remark*}
Fix $ x_0 \in X $ and $ \widetilde{x_0} \in \widetilde{X} $ such that $ p\br{\widetilde{x_0}} = x_0 $, so
$$ p_* : \pi_1\br{\widetilde{X}, \widetilde{x_0}} \to \pi_1\br{X, x_0}. $$
To every element in $ \pi_1\br{X, x_0} $ we can associate a homotopy class of paths in $ \widetilde{X} $ starting at $ \widetilde{x_0} $.
\pagebreak
\begin{proposition}
\label{prop:1.31}
\hfill
\begin{enumerate}
\item $ p_* : \pi_1\br{\widetilde{X}, \widetilde{x_0}} \to \pi_1\br{X, x_0} $ is injective.
\item $ p_*\br{\pi_1\br{\widetilde{X}, \widetilde{x_0}}} \subseteq \pi_1\br{X, x_0} $ consists of the homotopy classes of loops at $ x_0 $ whose lifts to $ \widetilde{X} $ starting at $ \widetilde{x_0} $ are loops.
\end{enumerate}
\end{proposition}
\begin{proof}