-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0FinalModelSD_GasInvestmentDecisionMaking_Thesis3_Ids_DSSlicensesed.mdl
2743 lines (2492 loc) · 119 KB
/
0FinalModelSD_GasInvestmentDecisionMaking_Thesis3_Ids_DSSlicensesed.mdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{UTF-8}
Production rate=
MIN (NG Production capacity*(Specific energy consumption+(0.0045*Exergy efficiency))\
, Developed reserves/TIME STEP)
~ m3/Year
~ |
"Non-feasible recoverability rate"=
IF THEN ELSE(Invest<=0, Undeveloped reserves/TIME STEP/3 , 0 )
~ m3
~ |
Total capital costs per developed well=
(((Construction cost exploration well/2.5)+Property costs per exploration well)*(1/Success fraction\
))+Costs for well development
+Property costs per development well
~ EUROS
~ |
Appraisal wells= INTEG (
Success rate of exploration wells,
1)
~ Wells
~ |
Budget for hydrogen asset= INTEG (
Hydrogen subsidies+Savings for green investments-"Investment in hydrogen R&D"-Investment in hydrogen asset\
,
100000)
~ EUROS
~ |
Invest=
IF THEN ELSE(Present value NG asset investment>=Future NPV if NOT invested in NG asset\
, Present value NG asset investment , 0 )
~ EUROS
~ |
Feasible recoverability rate=
IF THEN ELSE(Invest>=0, Technically recoverable resources/TIME STEP , 0 )
~ m3
~ |
Yearly expected cash flow per developed NG well=
(Initial well productivity per year*(Wellhead price NG-Operating costs per m3 NG))-Carbon emissions costs
~
~ |
Revenues from H2=
(Hydrogen market price*(Hydrogen transportation rate*0.09))-Operating costs per year
~ EUROS
~ |
Allowable emissions=
Emission trading system restrictions
~
~ |
Methane intensity=
60
~ gCO2 [0,120,15]
~ |
Subsidy provision factor=
1
~ Dmnl [0.5,1,0.1]
~ |
Debt and emission costs=
(Cumulative profit*Weighted average cost of capital)+Carbon emissions costs
~ EUROS
~ |
kg to m3==
11.11
~ Dmnl
~ |
Exergy efficiency=
0.75
~ Dmnl [0.6,1,0.05]
~ |
Carbon emissions costs=
((New wells*CH4 emissions per completed well)+(New wells*CO2 emissions per completed well\
)+(Production rate*Methane intensity
)+(Production rate*CO2 emissions per m3 NG produced))*((Carbon price/1e+06)*Carbon price multiplier\
)
~ EUROS
~ |
Carbon price= WITH LOOKUP (
Time,
([(2010,0)-(2050,500)],(2010,0),(2015,0),(2020,25),(2025,55),(2050,205) ))
~ EUROS/m3
~ |
Carbon price multiplier=
1
~ Dmnl [1,1.5,0.1]
~ |
Investment in hydrogen asset=
IF THEN ELSE((Initial costs hydrogen production>=Budget for hydrogen asset), 0 , Budget for hydrogen asset\
)
~ EUROS
~ |
Reduction spatial footprint=
(Spatial footprint learning rate+(1+MAX(0, "Effect R&D on electrolyser performance")\
)^(LN(MAX(1, ("Cumulative investments in hydrogen R&D"
/"Investment in hydrogen R&D")/LN(1.5) ) )) )/2.1
~ kW
~ |
Emission trading system restrictions=
1
~
~ |
CO2 emissions per completed well=
9
~ gCO2 [3,18,3]
~ |
Initial hydrogen price=
Price per kg/kg to m3
~ EUROS/m3
~ |
Revenue from NG=
(Wellhead price NG-Operating costs per m3 NG)*Production rate
~ EUROS
~ |
Specific energy consumption==
0.9923
~ Dmnl
~ |
Price per kg=
2
~ EUROS [1,6,0.5]
~ |
Hydrogen subsidies=
Subsidy scheme*Savings for green investments*Subsidy provision factor
~ EUROS
~ |
CH4 emissions per completed well=
2
~ gCO2 [0,4,1]
~ |
CO2 emissions per m3 NG produced=
50
~ gCO2 [10,90,10]
~ |
Cumulative carbon costs= INTEG (
Carbon emissions costs,
0)
~ EUROS
~ |
Spatial footprint learning rate=
0.9
~ Dmnl [0.7,1,0.05]
~ |
Cumulative profit= INTEG (
Revenue from NG+Revenues from H2-Debt and emission costs-Investment in development-Investment in exploration\
-Savings for green investments,
Initial investable capital)
~ EUROS
~ |
Hydrogen market price= INTEG (
"Price change (b) 0"/Time,
Initial hydrogen price)
~
~ |
Tranport and compression loss=
H2 Production capacity*Transport and compression efficiency
~ m3
~ |
"Standard normal variate (b) 0"=
RANDOM NORMAL(-20, 20 , 0 , 20 , "Noise seed (b) 0" )
~
~ |
"Noise seed (b) 0"==
4
~ [0,10,1]
~ |
"Drift parameter (b) 0"==
0.003
~ Dmnl [-0.005,0.005,0.05]
~ |
"Inflation rate (b) 0"=
"Average monetary inflation (b) 0"+((Hydrogen market price-Initial hydrogen price)*"Price/inflation impact ratio (b) 0"\
)
~
~ |
H2 market competitors= INTEG (
Rate of new entrants,
Competition constant offshore hydrogen production)
~ Dmnl
~ |
"Average monetary inflation (b) 0"=
0.0144
~ [0.01,0.022,0.001]
~ |
Chance of winning tender for offshore hydrogen asset=
1/H2 market competitors
~ Dmnl
~ |
"Price/inflation impact ratio (b) 0"=
0.04
~ [0.02,0.2,0.02]
~ |
Transport and compression efficiency=
0.015
~ Dmnl [0.005,0.035,0.005]
~ |
Electricity supply rate=
MIN(((Wind curtailment rate*GW to KWh)/H2 market competitors), (Hydrogen platforms*(\
Stack capacity*8760)) )
~ KWh
~ |
"Price change (b) 0"=
("Drift parameter (b) 0"*Hydrogen market price*Time)+("Volatility parameter (b) 0"*"Standard normal variate (b) 0"\
*Hydrogen market price*SQRT(Time))
~
~ |
"Volatility parameter (b) 0"==
0.3
~ Dmnl [0.1,1,0.1]
~ |
Initial costs hydrogen production=
Electrolyzer CAPEX+Pipeline investment costs+Platform modification costs
~ EUROS
~ |
Stack investment costs per kW= WITH LOOKUP (
Time,
([(2010,0)-(2050,2000)],(2010,1150),(2020,761),(2030,400),(2050,174) ))
~ Euro/kW
~ |
Completion rate hydrogen platforms=
MIN(Constructable offshore hydrogen platforms, (Hydrogen investment when licenses are requested\
/Initial costs hydrogen production
) )
~ Dmnl
~ |
Electrolyzer CAPEX=
(Stack investment costs per kW+Offshore BoP investment costs per kW)*Stack capacity
~ EUROS
~ |
Annual operating costs per kW= WITH LOOKUP (
Time,
([(2010,0)-(2050,40)],(2010,39),(2020,28.5),(2030,19),(2050,16) ))
~ EUROS
~ |
Stack replacement costs per year=
(Hydrogen system lifetime/Stack lifetime)*(Stack replacement costs per kW*Stack capacity\
)
~ EUROS
~ |
Pipeline investment costs per km=
((180*(Stack capacity/1e+06))+408)*1000
~ EUROS
~ |
Offshore BoP investment costs per kW=
Factor onshore to offshore BoP costs*Onshore BoP investment costs per kW
~ Euro/kW
~ |
"Decommissioning rate (2)"=
Hydrogen platforms/(Hydrogen system lifetime*2)
~ Dmnl
~ |
Onshore BoP investment costs per kW= WITH LOOKUP (
Time,
([(2010,0)-(2050,40)],(2010,38),(2020,26),(2030,20),(2050,14) ))
~ Euro/kW
~ |
Operating cost reduction fraction=
0.95
~ Dmnl [0.75,1.25,0.05]
~ |
Operating costs per year=
(Annual operating costs per kW*Operating cost reduction fraction*Stack capacity)+Stack replacement costs per year
~ EUROS
~ |
Hydrogen compression rate=
(((Stack efficiency-BoP auxiliaries)*Eletrolyser load)/"Energy content (1 atm, 0 degrees)"\
)/"Density (1 atm, 0 degrees)"
~ m3
~ |
Hydrogen investment when licenses are requested= DELAY FIXED (
Investment in hydrogen asset, Hydrogen construction license delay , 0)
~ EUROS
~ |
Hydrogen platforms= INTEG (
Completion rate hydrogen platforms-"Decommissioning rate (2)",
0)
~ Dmnl
~ |
Eletrolyser load= INTEG (
Electricity supply rate-Conversion loss-Hydrogen compression rate,
0)
~ KWh
~ |
Pipeline investment costs=
(Pipeline investment costs per km*Platform distance to shore)*Infrastructure availability\
*Infrastructure subsidiary
~ EUROS
~ |
Infrastructure subsidiary=
0.2
~ Dmnl [0.1,0.3,0.05]
~ |
Factor onshore to offshore BoP costs=
4
~ Dmnl [3,5,1]
~ |
Hydrogen construction license delay=
2
~ Years [2,5,1]
~ |
Platform modification costs=
4e+06
~ EUROS [2e+06,8e+06,500000]
~ Neptune site source
|
Power on platform deck= WITH LOOKUP (
Time,
([(2010,0)-(2050,50000)],(2010,0),(2026,10000),(2028,25000),(2030,50000),(2050,50000\
) ))
~ kW
~ |
Stack replacement costs per kW=
(Stack costs learning rate+(1+MAX(0, "Effect R&D on electrolyser performance"))^(LN(\
MAX(1, ("Cumulative investments in hydrogen R&D"
/"Investment in hydrogen R&D")/LN(3) ) )) )/2.65
~ Euro/kW
~ |
Infrastructure availability==
1
~ Dmnl
~ |
Hydrogen system lifetime=
25
~ Years [20,27,1]
~ |
Platform distance to shore=
150
~ km [100,300,25]
~ |
Stack lifetime=
Stack lifetime lookup/Effect of weather conditions on stack lifetime
~ Year
~ |
Stack lifetime lookup= WITH LOOKUP (
Time,
([(2010,0)-(2050,15)],(2010,9.2),(2020,9.5),(2030,10),(2040.34,11.7763),(2050,13.7)\
))
~ Year
~ |
Effect of weather conditions on stack lifetime=
0.9
~ Dmnl [0.5,1,0.1]
~ |
Stack capacity=
(Power on platform deck)*(Reduction spatial footprint)
~ kW
~ |
Stack costs learning rate= WITH LOOKUP (
Time,
([(2010,0)-(2050,500)],(2010,500),(2020,333),(2030,146),(2040.21,109.649),(2050,90)\
))
~ Euro/kW
~ |
Capacity factor=
1
~
~ This somehow has influence on costs in terms of minimal requirement for \
operation \cite{parra2016techno}
|
Stack efficiency=
(Electrolyser learning rate+(1+MAX(0, "Effect R&D on electrolyser performance"))^(LN\
(MAX(1, ("Cumulative investments in hydrogen R&D"
/"Investment in hydrogen R&D")/LN(3) ) )) )/2.45
~ Dmnl
~ (1-MAX(0, x))^(LN("Cumulative investments in hydrogen R&D")/LN(2))
|
Conversion loss=
Eletrolyser load*(1-Stack efficiency+BoP auxiliaries)
~ KWh
~ |
Electrical power to grid=
Cumulative offshore wind power*(1-"Energy PLAN curtailment factor 0.5 and baseload 10%"\
)
~ GW
~ |
Wind curtailment rate=
Cumulative offshore wind power*"Energy PLAN curtailment factor 0.5 and baseload 10%"
~ GW
~ |
"Energy content (1 atm, 0 degrees)"==
33.33
~ KWh/Kg
~ https://www.waterstofnet.eu/_asset/_public/Pdf-Ppt/waterstoftabel.pdf
|
H2 Production capacity= INTEG (
Hydrogen compression rate-Tranport and compression loss-Hydrogen transportation rate\
,
0)
~
~ |
GW to KWh=
365*24*1e+06
~ KWh
~ |
"Density (1 atm, 0 degrees)"==
0.09
~ Kg/m3
~ https://www.waterstofnet.eu/_asset/_public/Pdf-Ppt/waterstoftabel.pdf
|
BoP auxiliaries= WITH LOOKUP (
Time,
([(2010,0)-(2050,0.2)],(2010,0.18),(2019.91,0.130702),(2030.31,0.0859649),(2040.21,\
0.0684211),(2050,0.06) ))
~ Dmnl
~ file:///C:/Users/imdij/OneDrive/Bureaublad/Hydrogen_Costs/PEM%20THEORY.pdf \
p 53
|
Cumulative tender wins= INTEG (
Chance of winning tender for offshore hydrogen asset,
0)
~ Dmnl
~ |
Constructable offshore hydrogen platforms=
INTEGER( Cumulative tender wins )
~ Dmnl
~ |
test=
(1+MAX(0, 0.01))^(LN(MAX(10, "Cumulative investments in hydrogen R&D")/"Investment in hydrogen R&D"\
)/LN(2))
~
~ (1-MAX(0, NG learning rate factor))^(LN(Cumulative NG capacity/Initial \
installed NG capacity)/LN(2))
|
"Effect R&D on electrolyser performance"=
Budgetted green investment/10
~ Dmnl [?,?,0.001]
~ |
Competition constant offshore hydrogen production=
1
~ Dmnl [1,5,1]
~ |
Frequency of new market entrants=
12
~ Dmnl [6,16,2]
~ |
Rate of new entrants=
RANDOM POISSON(0, 1 , (TIME STEP*(1/Frequency of new market entrants)) , 0 , 1 , 0 )\
/TIME STEP
~ Dmnl
~ |
"OPEX to plant size ratio (1 MW = 5% but 1 GW = 1.52%)"=
1
~
~ https://www.fch.europa.eu/sites/default/files/study%20electrolyser_0-Logos_\
0_0.pdf
|
Electrolyser learning rate= WITH LOOKUP (
Time,
([(2010,0.4)-(2050,1)],(2010,0.44),(2012.57,0.52193),(2014.89,0.587719),(2017.34,0.635965\
),(2020.15,0.671053),(2023.7,0.70614),(2029.45,0.732456),(2050,0.765) ))
~ Dmnl
~ |
Completion rate of development wells=
MIN(Number spot well distribution*Completion rate of exploration and appraisal wells\
, MIN(Constructable development wells, (Leftover budget for development well construction\
/Costs for well development)))/Rig drilling lead time
~ Wells/Year
~ |
Completion rate of exploration and appraisal wells=
MIN(Appraisal wells, Investment in development/Costs for well development )/(1/Production license delay for unproven areas\
)
~ Wells/Year
~ (Appraisal wells + MIN(Constructable development wells, Investment in \
development/(Costs for well development+Property costs per development well
) ))/Production license delay for unproven areas
|
Constructable development wells=
Property acquired for development/Property costs per development well
~ Wells
~ |
Constructable exploration wells=
Property acquired for exploration/Property costs per exploration well
~ Wells
~ |
Leftover budget for exploration well construction=
MAX(Exploration investment when property are requested-Property acquired for exploration\
, 0)
~
~ |
Capacity factor increase with floating wind= WITH LOOKUP (
Time,
([(2010,0)-(2050,1.5)],(2010,1),(2025,1),(2050,1.5) ))
~ Dmnl
~ https://reader.elsevier.com/reader/sd/pii/S030626192100101X?token=E81A2EF83\
272198D55817022C424E2B237779BE80C7828AFFA044D67D5C8CE8C1A2511B6AA199003E8D1\
7B6F9F99E953 blz 7
|
Savings for green investments=
Percentage invested in hydrogen*Cumulative profit
~ EUROS
~ |
Energy PLAN climate wind data=
(IF THEN ELSE(Time=2010, 0.322355 , IF THEN ELSE(Time=2011, 0.311696 , IF THEN ELSE(\
Time=2012, 0.298153 , IF THEN ELSE(
Time=2013, 0.339348 ,IF THEN ELSE(Time=2014, 0.280598 , IF THEN ELSE(Time=2015, 0.295193\
, IF THEN ELSE(Time=2016, 0.343884
, IF THEN ELSE(Time=2017, 0.280758 , IF THEN ELSE(Time=2018, 0.321283 , IF THEN ELSE\
(Time=2019, 0.285961 , IF THEN ELSE
(Time=2020, 0.356289 , IF THEN ELSE(Time=2021, 0.280251 , IF THEN ELSE(Time=2022, 0.323253\
, IF THEN ELSE(Time=2023, 0.296137
, IF THEN ELSE(Time=2024, 0.328166 , IF THEN ELSE(Time=2025, 0.305569 , IF THEN ELSE\
(Time=2026, 0.283063 , IF THEN ELSE
(Time=2027, 0.304286 , IF THEN ELSE(Time=2028, 0.337352 , IF THEN ELSE(Time=2029, 0.321462\
, IF THEN ELSE(Time=2030, 0.323895
, IF THEN ELSE(Time=2031, 0.316921 , IF THEN ELSE(Time=2032, 0.305214 , IF THEN ELSE\
(Time=2033, 0.273674 , IF THEN ELSE
(Time=2034, 0.294012 , IF THEN ELSE(Time=2035, 0.269893 , IF THEN ELSE(Time=2036, 0.329038\
, IF THEN ELSE(Time=2037, 0.32072
, IF THEN ELSE(Time=2038, 0.303914 , IF THEN ELSE(Time=2039, 0.279065 , IF THEN ELSE\
(Time=2040, 0.264293 , IF THEN ELSE
(Time=2041, 0.310338 , IF THEN ELSE(Time=2042, 0.28088 , IF THEN ELSE(Time=2043, 0.322951\
, IF THEN ELSE(Time=2044, 0.270934
, IF THEN ELSE(Time=2045, 0.332505 , IF THEN ELSE(Time=2046, 0.252207 , IF THEN ELSE\
(Time=2047, 0.302888 , IF THEN ELSE
(Time=2048, 0.277998 , IF THEN ELSE(Time=2049, 0.274733 , IF THEN ELSE(Time=2050, 0.351596\
, 0 ) ) ) ) ) ) )) ) ) ) ) )
) ) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ))*Capacity factor increase with floating wind
~ Dmnl
~ |
Subsidy scheme= WITH LOOKUP (
Time,
([(2010,0)-(2050,0.4)],(2010,0.4),(2018.07,0.380702),(2024.62,0.345614),(2031.28,0.284211\
),(2035.44,0.212281),(2038.23,0.115789),(2040,0),(2050,0) ))
~ Dmnl
~ |
"Hydrogen R&D"= WITH LOOKUP (
Time,
([(2008,0)-(2050,1)],(2008.9,1),(2015.06,0.907895),(2018.92,0.72807),(2020.72,0.504386\
),(2022.39,0.346491),(2025.72,0.214912),(2030.61,0.140351),(2036.13,0.0921053),(2040.75\
,0.0657895),(2050,0.05) ))
~ EUROS
~ \cite{schmidt2017future}
R&D is important and can reduce capital costs increasingly (0-24% \
reduction estimates)
|
"Investment in hydrogen R&D"=
("Hydrogen R&D"*Savings for green investments)+("Hydrogen R&D"*Hydrogen subsidies)
~ EUROS
~ |
"Cumulative investments in hydrogen R&D"= INTEG (
"Investment in hydrogen R&D",
0)
~ EUROS
~ |
Property acquired for exploration=
DELAY1(Money desired for exploration property*Exploration acceptance fraction, Exploration license delay\
)
~ EUROS
~ |
Property acquired for development=
DELAY N( Money desired for development property*Development acceptance fraction , Development license delay\
, 0 , 0.5 )
~ EUROS
~ |
Property desire factor development=
14
~ Dmnl [10,18,2]
~ |
Money desired for development property=
Investment in development/Property desire factor development
~ EUROS
~ |
Money desired for exploration property=
Investment in exploration/Property desire factor exploration
~ EUROS
~ |
"Energy PLAN curtailment factor 0.5 and baseload 10%"=
IF THEN ELSE(Time=2010, 0 , IF THEN ELSE(Time=2011, 0 , IF THEN ELSE(Time=2012, 0 , \
IF THEN ELSE(Time
=2013, 0 ,IF THEN ELSE(Time=2014, 0 , IF THEN ELSE(Time=2015, 0 , IF THEN ELSE(Time=\
2016, 0
, IF THEN ELSE(Time=2017, 0 , IF THEN ELSE(Time=2018, 0 , IF THEN ELSE(Time=2019, 0 \
, IF THEN ELSE(
Time=2020, 0 , IF THEN ELSE(Time=2021, 0 , IF THEN ELSE(Time=2022, 0 , IF THEN ELSE(\
Time=2023, 0
, IF THEN ELSE(Time=2024, 0 , IF THEN ELSE(Time=2025, 0 , IF THEN ELSE(Time=2026, 0.163925\
, IF THEN ELSE
(Time=2027, 0.192649 , IF THEN ELSE(Time=2028, 0.178555 , IF THEN ELSE(Time=2029, 0.181976\
, IF THEN ELSE(Time=2030, 0.183996 , IF THEN ELSE(Time=2031, 0.174664 , IF THEN ELSE\
(Time=2032, 0.170902 , IF THEN ELSE(Time=2033, 0.173364 , IF THEN ELSE
(Time=2034, 0.187705 , IF THEN ELSE(Time=2035, 0.148818 , IF THEN ELSE(Time=2036, 0.18996\
, IF THEN ELSE(Time=2037, 0.179678 , IF THEN ELSE(Time=2038, 0.160278 , IF THEN ELSE\
(Time=2039, 0.1483 , IF THEN ELSE(Time=2040, 0.155286 , IF THEN ELSE
(Time=2041, 0.179219 , IF THEN ELSE(Time=2042, 0.149236 , IF THEN ELSE(Time=2043, 0.177067\
, IF THEN ELSE(Time=2044, 0.172349 , IF THEN ELSE(Time=2045, 0.192425 , IF THEN ELSE\
(Time=2046, 0.144202 , IF THEN ELSE(Time=2047, 0.171693 , IF THEN ELSE
(Time=2048, 0.15317 , IF THEN ELSE(Time=2049, 0.155682 , IF THEN ELSE(Time=2050, 0.197626\
, 0 ) ) ) ) ) ) )) ) ) ) ) )
) ) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
~ Dmnl
~ |
Property desire factor exploration=
10
~ Dmnl [10,18,1]
~ |
Wind power production rate=
Energy PLAN climate wind data*Installment of a 1GW wind farm
~ GW
~ |
Installment of a 1GW wind farm= DELAY FIXED (
Permitted installed wind capacity, Construction license delay wind, Permitted installed wind capacity\
)
~ GW
~ |
Installed wind capacity=
Energy PLAN climate wind data*Installment of a 1GW wind farm
~ GW
~ |
Construction license delay wind=
0.5
~ Year [0.5,2,0.5]
~ |
Permitted installed wind capacity=
Offshore wind acceptance fraction*Planned installed wind capacity Dutch continental shelf
~ GW
~ |
Offshore wind acceptance fraction=
0.98
~ Dmnl [0.9,1,0.01]
~ |
Planned installed wind capacity Dutch continental shelf=
0.1+(((Time-2010)*Scenario slope)^Transitioning factor)
~ GW
~ https://www.topsectorenergie.nl/sites/default/files/uploads/Holland_your_po\
rtal_to_offshore_wind_power.pdf = 0.1
|
Transitioning factor=
1.6
~ Dmnl [1.3,2,0.1]
~ |
Scenario slope=
44/387
~ Dmnl
~ |
Percentage invested in hydrogen=
MIN( 1, ((Societal awareness*(Time-2009))+Budgetted green investment) )
~ Dmnl [0,1,0.01]
~ |
Ratio exploration over development investment==
0.3
~ Dmnl [0.3,0.3]
~ |
"Percentage invested in exploration/development"=
MAX( 0, (1-Percentage invested in hydrogen) )
~ Dmnl
~ |
Investment in exploration=
MAX(("Percentage invested in exploration/development"*Ratio exploration over development investment\
)*Cumulative profit, 0 )
~ EUROS
~ |
Investment in development=
MAX(("Percentage invested in exploration/development"*(1-Ratio exploration over development investment\
))*Cumulative profit, 0 )
~ EUROS
~ |
Cumulative NG capacity= INTEG (
Capacity increase rate,
Initial installed NG capacity)
~ m3
~ |
NG learning rate=
(1-MAX(0, NG learning rate factor))^(LN(Cumulative NG capacity/Initial installed NG capacity\
)/LN(2))
~ Dmnl
~ |
Production wells= INTEG (
Completion rate of development wells+Completion rate of exploration and appraisal wells\
-"Decommissioning rate (1)",
6)
~ Wells
~ |
Societal awareness=
0.01
~ Dmnl [0.01,0.02,0.001]
~ |
Budgetted green investment=
0.02
~ Dmnl [0.02,0.16,0.02]
~ |
Exploration well completion expense=
Completion rate of exploration and appraisal wells*(Costs for well development)
~ EUROS
~ |
"Feasible recoverability rate (b)"=
("Technically recoverable resources (b)"/TIME STEP)*("Breakeven value of undeveloped reserves (b)"\
/1000)
~ m3/Year
~ |
"Production rate (b)"=
"Developed reserves (b)"/TIME STEP
~
~ |
"Adjustment rate breakeven undeveloped reserves (b)"=
"Breakeven value of undeveloped reserves (b)"*("Wellhead price NG (b)"-"Development costs per unit (b)"\
)/"Development costs per unit (b)"
~
~ |
Cumulative offshore wind power= INTEG (
Wind power production rate-Electrical power to grid-Wind curtailment rate,
0)
~
~ Assumption. no equipment degradation - wind energy
|
Hydrogen transportation rate=
H2 Production capacity
~
~ |
GAS PRICE CALC=
1
~
~ 8.04 (gas price per mmbtu - \
https://www.dnv.com/maritime/lng/current-price-development-oil-and-gas.html\
) /28.263682 (m3 NG per mmbtu) = 0,284463999 dollar/m3 = 0.238 euro/m3 NG
|
"Development costs per unit (b)"=
"Total development costs per well (b)"/"Average estimated ultimate recovery per well (b)"
~ EUR/m3
~ |
"Noise seed (b)"=
4
~ [0,10,1]
~ |
"Revenue from NG (b)"=
"Production rate (b)"*"Wellhead price NG (b)"
~ EUROS
~ |
"Development rate (b)"=
MIN( ("Undeveloped reserves (b)"/TIME STEP) , ("Investment in development (b)"/"Development costs per unit (b)"\
) )
~ m3/Year
~ |
"Breakeven value of undeveloped reserves (b)"= INTEG (
"Adjustment rate breakeven undeveloped reserves (b)",
100)
~
~ |
"Average estimated ultimate recovery per well (b)"=
1.4e+08
~ m3 [1e+07,2e+08,1e+07]
~ |
"Total development costs per well (b)"=
2.3e+07
~ [2e+07,3.5e+07,1e+06]
~ |
"Average monetary inflation (b)"=
0.0144
~ [0.01,0.022,0.001]
~ |
"Succes fraction (b)"=
0.7
~ {%} [0.4,0.8,0.05]
~ |
"Drift parameter (b)"=
-0.03
~ [-0.05,0.1,0.01]
~ |
"Non-feasible recoverability rate (b)"=
MAX(0, "Undeveloped reserves (b)"-"Breakeven value of undeveloped reserves (b)")
~ m3/Year
~ |
"Price change (b)"=
("Drift parameter (b)"*"Wellhead price NG (b)"*Time)+("Volatility parameter (b)"*"Standard normal variate (b)"\
*"Wellhead price NG (b)"*SQRT(Time))
~
~ |
"Volatility parameter (b)"=
0.1
~ [0.1,1,0.1]
~ |
"Desired discovery rate (b)"=
DELAY1((("Investment in exploration (b)"*"Succes fraction (b)")/"Unit exploration cost (b)"\
), "Discovery delay (b)" )
~
~ |
"Developed reserves (b)"= INTEG (
"Development rate (b)"-"Production rate (b)",
0.5)
~ m3
~ |
"Standard normal variate (b)"=
RANDOM NORMAL(-20, 20 , 0 , 20 , "Noise seed (b)" )
~
~ |
"Discovery rate (b)"=
MIN(("Prospective NG resources Dutch continental shelf (b)"/TIME STEP),"Desired discovery rate (b)"\
)
~ m3/Year
~ |
"Unit exploration cost (b)"=
0.06
~ EUR/m3 [0.05,0.2]
~ |
"Inflation rate (b)"=
"Average monetary inflation (b)"+(("Wellhead price NG (b)"-"Initial wellhead price NG (b)"\
)*"Price/inflation impact ratio (b)")
~
~ |
"Discovery delay (b)"=
2
~ Year [1,5,0.5]
~ |
"Wellhead price NG (b)"= INTEG (
"Price change (b)"/Time,
"Initial wellhead price NG (b)")
~
~ |
"Price/inflation impact ratio (b)"=
0.04
~ [0.02,0.2,0.02]
~ |
"Initial wellhead price NG (b)"=
0.2
~ EUROS/m3 [0.11,0.27,0.01]
~ |
"Initial investable capital (b)"=
5e+06
~ EUROS [5e+06,3e+07,1e+06]
~ |
Cumulative profit 0= INTEG (
"Revenue from NG (b)"-"Investment in development (b)"-"Investment in exploration (b)"\
,
"Initial investable capital (b)")
~ EUROS
~ |
"Investment in development (b)"=
MAX((1-"Percentage invested in exploration/development (b)")*Cumulative profit 0, 0 \
)
~ EUROS
~ |
"Investment in exploration (b)"=
MAX("Percentage invested in exploration/development (b)"*Cumulative profit 0, 0 )
~ EUROS
~ |
"Percentage invested in exploration/development (b)"=