-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLens.idr
125 lines (91 loc) · 3.04 KB
/
Lens.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
module Lens
import Control.Category
%access public export
-- Store comonad
data Store s a = MkStore (s -> a) s
interface Functor w => Comonad (w : Type -> Type) where
extract : w a -> a
extend : (w a -> b) -> w a -> w b
interface Comonad w => VerifiedComonad (w : Type -> Type) where
comonadLaw1 : (wa : w a) ->
extend extract wa = wa
comonadLaw2 : (f : w a -> b) ->
(wa : w a) ->
extract (extend f wa) = f wa
comonadLaw3 : (f : w b -> c) ->
(g : w a -> b) ->
(wa : w a) ->
extend f (extend g wa) = extend (\d => f (extend g d)) wa
Functor (Store s) where
map f (MkStore g a) = MkStore (f . g) a
Comonad (Store s) where
extract (MkStore f a) = f a
extend f (MkStore g a) = MkStore (\b => f (MkStore g b)) a
-- VerifiedComonad (Store s) where
-- comonadLaw1 (MkStore f a) = ?storeIdentityProof
-- comonadLaw2 f (MkStore g a) = Refl
-- comonadLaw3 f g (MkStore h a) = Refl
-- -- TODO: This is evil.
-- -- Supposedly (jonsterling) this definition used to work without the believe_me.
-- private
-- eta : (f : a -> b) -> f = (\c => f c)
-- eta g = believe_me Refl {g}
-- storeIdentityProof = proof
-- intros
-- rewrite eta f
-- trivial
pos : Store s a -> s
pos (MkStore _ s) = s
peek : s -> Store s a -> a
peek s (MkStore f _) = f s
peeks : (s -> s) -> Store s a -> a
peeks f (MkStore g s) = g (f s)
-- Lenses
data Lens a b = MkLens (a -> Store b a)
Category Lens where
id = MkLens (MkStore id)
(.) (MkLens f) (MkLens g) = MkLens (\a => case g a of
MkStore ba b => case f b of
MkStore cb c => MkStore (Prelude.Basics.(.) ba cb) c)
lens : (a -> b) -> (b -> a -> a) -> Lens a b
lens f g = MkLens (\a => MkStore (\b => g b a) (f a))
iso : (a -> b) -> (b -> a) -> Lens a b
iso f g = MkLens (\a => MkStore g (f a))
getL : Lens a b -> a -> b
getL (MkLens f) a = pos (f a)
setL : Lens a b -> b -> a -> a
setL (MkLens f) b = peek b . f
modL : Lens a b -> (b -> b) -> a -> a
modL (MkLens f) g = peeks g . f
mergeL : Lens a c -> Lens b c -> Lens (Either a b) c
mergeL (MkLens f) (MkLens g) = MkLens $ either (\a => map Left $ f a)
(\b => map Right $ g b)
infixr 0 ^$
(^$) : Lens a b -> a -> b
(^$) = getL
infixr 4 ^=
(^=) : Lens a b -> b -> a -> a
(^=) = setL
infixr 4 ^%=
(^%=) : Lens a b -> (b -> b) -> a -> a
(^%=) = modL
fstLens : Lens (a,b) a
fstLens = MkLens $ \(a,b) => MkStore (\ a' => (a', b)) a
sndLens : Lens (a,b) b
sndLens = MkLens $ \(a,b) => MkStore (\ b' => (a, b')) b
-- Partial lenses
data PLens a b = MkPLens (a -> Maybe (Store b a))
Category PLens where
id = MkPLens (Just . MkStore id)
(.) (MkPLens f) (MkPLens g) = MkPLens (\a => do
MkStore wba b <- g a
MkStore wcb c <- f b
pure (MkStore (wba . wcb) c))
plens : (a -> Either a (Store b a)) -> PLens a b
plens f = MkPLens $ either (const Nothing) Just . f
getPL : PLens a b -> a -> Maybe b
getPL (MkPLens f) a = map pos (f a)
justPL : PLens (Maybe a) a
justPL = MkPLens (\ma => do
a <- ma
pure (MkStore Just a))