-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_results.py
146 lines (131 loc) · 6.21 KB
/
parse_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import os
input_dir = './hyper_results'
output_file = 'all_results_2.csv'
major_metric = 'ndcg@10'
must_contain_file_name = '_bias_fixed'
cannot_contain_file_name = 'lR_bias_fixed'
dataset_d2_new = {'amazon-beauty': 'beauty', 'yelp2018': 'yelp', 'ml10m': 'ml-10m'}
excluding_dataset = set([])
#excluding_dataset = set(['ml-10m'])
#excluding_dataset = set(['ml-10m','steam'])
#results_set = 'val,test'
results_set = 'test'
def parse_line(line):
results = line.split(' ')
out_dict = {}
for result in results:
#print(result)
if ' : ' not in result:
continue
metric, score = result.split(' : ')
out_dict[metric] = float(score)
return out_dict
def get_best_score(f_in):
result_line_num = 6
lines = f_in.readlines()
assert len(lines) % result_line_num == 0
num_results = int(len(lines) / result_line_num)
max_metric = 0
best_val_score, best_test_score, best_parameters = [], [], []
for i in range(num_results):
parameters = lines[i*6]
val_score = parse_line(lines[i*6+2])
test_score = parse_line(lines[i*6+4])
if val_score[major_metric] > max_metric:
max_metric = val_score[major_metric]
best_val_score = val_score
best_test_score = test_score
best_parameters = parameters
return best_val_score, best_test_score, best_parameters
output_dict = {}
for filename in os.listdir(input_dir):
f = os.path.join(input_dir, filename)
if not os.path.isfile(f):
continue
#if 'bias_fixed' not in filename and 'Repeat' not in filename:
# continue
f_name_list = filename.replace('GRU_d01','GRU-d01').split('_')
model_name = f_name_list[1]
dataset_name = f_name_list[2]
if dataset_name in dataset_d2_new:
dataset_name = dataset_d2_new[dataset_name]
if dataset_name in excluding_dataset:
continue
if len(f_name_list)>3:
method_name = '_'.join(f_name_list[3:])
if cannot_contain_file_name in method_name:
continue
if must_contain_file_name not in method_name:
continue
else:
method_name = 'Softmax'
index = (model_name, method_name)
if index not in output_dict:
output_dict[index] = {}
para_col = 'best_parameter_'+dataset_name
with open(f) as f_in:
best_val_score, best_test_score, best_parameters = get_best_score(f_in)
#output_dict['model_name'].append(model_name)
#output_dict['method_name'].append(method_name)
#if para_col not in output_dict:
# output_dict[para_col] = []
#output_dict[para_col].append(best_parameters)
#output_dict['best_parameter'].append(best_parameters)
output_dict[index][para_col] = best_parameters
for metric in best_val_score:
if 'val' in results_set:
val_col = 'val_'+dataset_name+'_'+metric
output_dict[index][val_col] = best_val_score[metric]
if 'test' in results_set:
test_col = 'test_'+dataset_name+'_'+metric
output_dict[index][test_col] = best_test_score[metric]
#if val_col not in output_dict:
# output_dict[val_col] = []
# output_dict[test_col] = []
#output_dict[val_col].append(best_val_score[metric])
#output_dict[test_col].append(best_test_score[metric])
df = pd.DataFrame.from_dict(output_dict, orient='index')
df = df.sort_index()
#metric_list = ['ndcg', 'hit', 'recall', 'mrr', 'precision']
#metric_list = ['ndcg', 'hit', 'mrr']
metric_list = ['ndcg', 'hit']
duplicated_datasets = ['yoochoose', 'algebra', 'gowalla', 'steam', 'tmall']
uniq_datasets = ['twitch', 'book', 'ml-10m', 'beauty', 'game', 'ml1m', 'yelp']
#prob_datasets = ['tmall', 'twitch', 'ml-10m', 'book', 'yoochoose']
#prob_datasets = ['twitch', 'ml-10m', 'book', 'yoochoose']
for metric in metric_list:
if 'val' in results_set:
val_col_names = ['val_'+ x +'_'+metric+'@10' for x in duplicated_datasets if x not in excluding_dataset]
df['dup_val_prod_'+metric] = df[val_col_names].prod(min_count=len(val_col_names),axis=1).pow(1.0/len(val_col_names))
if 'test' in results_set:
test_col_names = ['test_'+ x +'_'+metric+'@10' for x in duplicated_datasets if x not in excluding_dataset]
df['dup_test_prod_'+metric] = df[test_col_names].prod(min_count=len(test_col_names),axis=1).pow(1.0/len(test_col_names))
for metric in metric_list:
if 'val' in results_set:
val_col_names = ['val_'+ x +'_'+metric+'@10' for x in uniq_datasets if x not in excluding_dataset]
df['uniq_val_prod_'+metric] = df[val_col_names].prod(min_count=len(val_col_names),axis=1).pow(1.0/len(val_col_names))
if 'test' in results_set:
test_col_names = ['test_'+ x +'_'+metric+'@10' for x in uniq_datasets if x not in excluding_dataset]
df['uniq_test_prod_'+metric] = df[test_col_names].prod(min_count=len(test_col_names),axis=1).pow(1.0/len(test_col_names))
#for metric in metric_list:
# val_col_names = ['val_'+ x +'_'+metric+'@10' for x in prob_datasets if x not in excluding_dataset]
# test_col_names = ['test_'+ x +'_'+metric+'@10' for x in prob_datasets if x not in excluding_dataset]
# df['prob_val_prod_'+metric] = df[val_col_names].prod(min_count=len(val_col_names),axis=1).pow(1.0/len(val_col_names))
# df['prob_test_prod_'+metric] = df[test_col_names].prod(min_count=len(val_col_names),axis=1).pow(1.0/len(test_col_names))
for metric in metric_list:
if 'val' in results_set:
val_col_names = [x for x in df.columns if 'val_' in x and '_'+metric in x]
df['val_prod_'+metric] = df[val_col_names].prod(min_count=len(val_col_names),axis=1).pow(1.0/len(val_col_names))
if 'test' in results_set:
test_col_names = [x for x in df.columns if 'test_' in x and '_'+metric in x]
df['test_prod_'+metric] = df[test_col_names].prod(min_count=len(test_col_names),axis=1).pow(1.0/len(test_col_names))
#print(val_col_names)
#print(df[val_col_names].prod(min_count=len(val_col_names),axis=1))
rest_columns = []
for x in df.columns:
for metric in metric_list+['best']:
if metric in x:
rest_columns.append(x)
break
df[rest_columns].to_csv(output_file)