-
Notifications
You must be signed in to change notification settings - Fork 45
/
train_size_gnn.py
140 lines (127 loc) · 5.47 KB
/
train_size_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import datetime
import os
import sys
from pytorch_lightning import Trainer, callbacks, loggers
from src import const
from src.linker_size_lightning import SizeClassifier, SizeRegressor, SizeOrdinalClassifier
from src.utils import disable_rdkit_logging, Logger
from pdb import set_trace
parser = argparse.ArgumentParser()
parser.add_argument('--experiment', action='store', type=str, required=True)
parser.add_argument('--data', action='store', type=str, required=True)
parser.add_argument('--train_data_prefix', action='store', type=str, required=True)
parser.add_argument('--val_data_prefix', action='store', type=str, required=True)
parser.add_argument('--hidden_nf', action='store', type=int, required=False, default=128)
parser.add_argument('--n_layers', action='store', type=int, required=False, default=3)
parser.add_argument('--normalization', action='store', type=str, required=False, default=None)
parser.add_argument('--batch_size', action='store', type=int, required=False, default=64)
parser.add_argument('--lr', action='store', type=float, required=False, default=1e-3)
parser.add_argument('--task', action='store', type=str, required=False, default='classification')
parser.add_argument('--loss_weights', action='store_true', default=False)
parser.add_argument('--device', action='store', type=str, required=True)
parser.add_argument('--checkpoints', action='store', type=str, required=True)
parser.add_argument('--logs', action='store', type=str, required=True)
parser.add_argument('--wandb_entity', type=str, default=None, help='Entity (project) name')
def main(args):
disable_rdkit_logging()
start_time = datetime.datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
run_name = f'{args.experiment}_{start_time}'
checkpoints_dir = os.path.join(args.checkpoints, run_name)
general_logs_dir = os.path.join(args.logs, "general_logs", run_name)
os.makedirs(checkpoints_dir, exist_ok=True)
os.makedirs(general_logs_dir, exist_ok=True)
sys.stdout = Logger(logpath=os.path.join(args.logs, "general_logs", run_name, f'log.log'), syspart=sys.stdout)
sys.stderr = Logger(logpath=os.path.join(args.logs, "general_logs", run_name, f'log.log'), syspart=sys.stderr)
is_geom = 'geom' in args.train_data_prefix
loss_weights = None
if is_geom:
in_node_nf = const.GEOM_NUMBER_OF_ATOM_TYPES
out_node_nf = len(const.GEOM_TRAIN_LINKER_ID2SIZE)
linker_size2id = const.GEOM_TRAIN_LINKER_SIZE2ID
linker_id2size = const.GEOM_TRAIN_LINKER_ID2SIZE
if args.loss_weights:
loss_weights = const.GEOM_TRAIN_LINKER_SIZE_WEIGHTS
else:
in_node_nf = const.NUMBER_OF_ATOM_TYPES
out_node_nf = len(const.ZINC_TRAIN_LINKER_ID2SIZE)
linker_size2id = const.ZINC_TRAIN_LINKER_SIZE2ID
linker_id2size = const.ZINC_TRAIN_LINKER_ID2SIZE
if args.loss_weights:
loss_weights = const.ZINC_TRAIN_LINKER_SIZE_WEIGHTS
torch_device = 'cuda:0' if args.device == 'gpu' else 'cpu'
wandb_logger = loggers.WandbLogger(
save_dir=args.logs,
project='linker_size_classifier',
name=run_name,
id=run_name,
resume='allow',
entity=args.wandb_entity,
)
# wandb_logger = False
checkpoint_callback = callbacks.ModelCheckpoint(
dirpath=checkpoints_dir,
filename=run_name + '_{epoch:02d}',
monitor='loss/val',
save_top_k=-1,
)
if args.task == 'classification':
model = SizeClassifier(
data_path=args.data,
train_data_prefix=args.train_data_prefix,
val_data_prefix=args.val_data_prefix,
in_node_nf=in_node_nf,
hidden_nf=args.hidden_nf, # 128
out_node_nf=out_node_nf,
n_layers=args.n_layers,
batch_size=args.batch_size, # 64
lr=args.lr, # 1e-3
normalization=args.normalization,
torch_device=torch_device,
loss_weights=loss_weights,
linker_size2id=linker_size2id,
linker_id2size=linker_id2size,
)
elif args.task == 'ordinal':
model = SizeOrdinalClassifier(
data_path=args.data,
train_data_prefix=args.train_data_prefix,
val_data_prefix=args.val_data_prefix,
in_node_nf=in_node_nf,
hidden_nf=args.hidden_nf, # 128
out_node_nf=out_node_nf,
n_layers=args.n_layers,
batch_size=args.batch_size, # 64
lr=args.lr, # 1e-3
normalization=args.normalization,
torch_device=torch_device,
linker_size2id=linker_size2id,
linker_id2size=linker_id2size,
)
elif args.task == 'regression':
model = SizeRegressor(
data_path=args.data,
train_data_prefix=args.train_data_prefix,
val_data_prefix=args.val_data_prefix,
in_node_nf=in_node_nf,
hidden_nf=args.hidden_nf, # 128
n_layers=args.n_layers,
batch_size=args.batch_size, # 64
lr=args.lr, # 1e-3
normalization=args.normalization,
torch_device=torch_device,
)
else:
raise NotImplementedError
trainer = Trainer(
max_epochs=1000,
logger=wandb_logger,
callbacks=[checkpoint_callback],
accelerator=args.device,
devices=1,
num_sanity_val_steps=0,
enable_progress_bar=True,
)
trainer.fit(model=model)
if __name__ == '__main__':
main(parser.parse_args())