-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathH0live.py
198 lines (160 loc) · 7.89 KB
/
H0live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Script for live estimation of combined H0 posterior from pre-computed likelihood
Tathagata ghosh
"""
import pandas as pd
import numpy as np
from scipy.integrate import simpson, cumtrapz
import matplotlib.pyplot as plt
from scipy.optimize import fmin
from scipy.interpolate import interp1d, UnivariateSpline
import streamlit as st
from matplotlib.backends.backend_agg import RendererAgg
from seaborn import color_palette
_lock = RendererAgg.lock
class H0live :
def __init__ (self, events, H0prior="uniform", level=0.9, likelihood_fname="test.csv", planck=True, riess=True, likelihood_plot=True, data_download=True) :
"""
Class to calculate combined H0 posterior by combining H0 likelihood for different choices of GW events and H0 prior.
Parameters:
-----------
events: list
List of GW events
H0prior : str
Prior over H0 to calculate H0 posterior. Default is uniform prior. Log prior is also available.
level : float
Credible interval for combined H0 posterior.
likelihood_fname : str
File name where H0 likelohoods for all available GW events are stored.
planck : bool (Default True)
Plot plack H0 uncertainity region.
riess : bool (Default True)
Plot SH0E et al. H0 uncertainity region.
likelihood_plot : bool (Default True)
Plot H0 likelihood for individual event.
data_download : bool (Default True)
Download H0 likelihood
"""
# read H0 likelihood from the existing file
likelihood_allevents = pd.read_csv (likelihood_fname)
# H0 array over which H0 posterior is calculated
self.H0_array = likelihood_allevents.H0.values
# select H0 likelihood for selected H0 likelihood from the file mentioned above
likelihood_events_sel = np.zeros ([len(events), likelihood_allevents.shape[0]])
# store selected H0 likelihood in array
for ee, event in enumerate(events) :
likelihood_events_sel [ee] = likelihood_allevents[event].values
# combined the selected H0 likelihood to get combined H0 likelihood: perform summation of logarithms of H0 likelihoods
log_likelihood_combined = np.sum(np.log(likelihood_events_sel), axis=0)
# combined H0 likelihood from the logarithmic values
self.likelihood_combined = np.exp(log_likelihood_combined)
# define H0 prior (uniform or uniform in log in scale)
self.H0prior = H0prior
# calculate normalized combined H0 posterior
pH0_normalized = self.probability ()
# calculate the credible interval of combined H0 posterior
CI = credible_interval (pH0_normalized, self.H0_array, level=level)
H0low = CI.lower_level
H0high = CI.upper_level
H0map = CI.map
# plot
ymin = 0
ymax = 1.1*max(pH0_normalized)
c = color_palette('colorblind')
with _lock :
fig = plt.figure()
# individual likelihood plot
if likelihood_plot is True :
for ee, event in enumerate(events) :
likelihood_event_normalized = self.normalize(likelihood_events_sel [ee], self.H0_array)
plt.plot (self.H0_array, likelihood_event_normalized, lw=1.5, color=c[ee], label=event)
# combined posterior and prior plot
plt.plot (self.H0_array, pH0_normalized, lw=2.5, color=c[9], label="Combined Posterior")
plt.plot (self.H0_array, self.prior(), ls="--", color=c[8], lw=2, label="Prior")
plt.axvline (H0map, color=c[9], lw=2, ls=':')
plt.axvline (H0low, color=c[9], lw=2, ls=':')
plt.axvline (H0high, color=c[9], lw=2, ls=':')
# Planck: https://arxiv.org/abs/1807.06209
if planck is True :
planck_H0_value = 67.4
planck_H0_sigma = 0.5
plt.fill_betweenx([ymin,ymax], planck_H0_value-planck_H0_sigma, planck_H0_value+planck_H0_sigma, color=c[7], alpha=0.6, label="Planck")
#SH0ES: https://arxiv.org/abs/1903.07603
if riess is True :
riess_H0_value = 74.03
riess_H0_sigma = 1.42
plt.fill_betweenx([ymin,ymax], riess_H0_value-riess_H0_sigma, riess_H0_value+riess_H0_sigma, color=c[6], alpha=0.6, label="SH0ES")
plt.xlim (self.H0_array[0],self.H0_array[-1])
plt.ylim (ymin, ymax)
plt.xlabel (r"$H_{0} {\rm \ (km\ s^{-1}\ Mpc^{-1})}$", size=15)
plt.ylabel (r"$p(H_{0}) {\rm \ (km^{-1}\ s\ Mpc)}$", size=15)
plt.title (r"$H_{0}=%.2f^{+%.2f}_{-%.2f}\ {\rm km\ s^{-1}\ Mpc^{-1}} (%d %s {\rm CI})$"
%(H0map, H0high-H0map, H0map-H0low, level*100, r"$%$"))
plt.tick_params(labelsize=12, direction='in')
plt.legend (fontsize=8)
plt.tight_layout ()
st.pyplot(fig, clear_figure=True)
# download H0 likelihood data which are used to generate combined H0 posterior
if data_download :
self.H0data_download = pd.DataFrame( likelihood_events_sel.T, columns = events)
self.H0data_download.insert (0, "H0", self.H0_array)
self.H0data_download.insert (self.H0data_download.shape [-1], "combined_posterior", pH0_normalized)
def probability (self) :
"""
Calculate combined H0 posterior depending on the choice of H0 prior
"""
# H0 prior is uniform
if self.H0prior=="uniform" :
pH0_normalized = self.normalize(self.likelihood_combined, self.H0_array)
# H0 prior is uniform in logarithmic scale
elif self.H0prior=="log" :
pH0 = self.likelihood_combined/self.H0_array
pH0_normalized = self.normalize(pH0, self.H0_array)
return pH0_normalized
def prior (self) :
"""
Define H0 prior to calculate combined H0 posterior
"""
# H0 prior array when H0 prior is uniform
if self.H0prior=="uniform" :
H0prior = np.ones (self.H0_array.size)/(self.H0_array[-1]-self.H0_array[0])
# H0 prior array when H0 prior is uniform in logarithmic scale
elif self.H0prior=="log" :
invH0prior = self.H0_array*(np.log(self.H0_array[-1])-np.log(self.H0_array[0]))
H0prior = 1/invH0prior
return H0prior
def normalize (self, y, x) :
"""
Normalize 1d function: defined to normalize the combine H0 posterior.
"""
norm = simpson(y,x)
return y/norm
# The following snippet is taken from https://git.ligo.org/lscsoft/gwcosmo/-/blob/master/gwcosmo/utilities/posterior_utilities.py
class credible_interval:
def __init__(self, posterior, H0, level, verbose=False):
self.posterior = posterior
self.H0 = H0
self.level = level
self.verbose = verbose
self.lower_level, self.upper_level = self.HDI()
self.interval = self.upper_level - self.lower_level
self.map = self.MAP()
def HDI(self):
cdfvals = cumtrapz(self.posterior, self.H0)
sel = cdfvals > 0.
x = self.H0[1:][sel]
cdfvals = cdfvals[sel]
ppf = interp1d(cdfvals, x, fill_value=0., bounds_error=False)
def intervalWidth(lowTailPr):
ret = ppf(self.level + lowTailPr) - ppf(lowTailPr)
if (ret > 0.):
return ret
else:
return 1e4
HDI_lowTailPr = fmin(intervalWidth, 1. - self.level, disp=self.verbose)[0]
return ppf(HDI_lowTailPr), ppf(HDI_lowTailPr + self.level)
def MAP(self):
sp = UnivariateSpline(self.H0, self.posterior, s=0.)
x_highres = np.linspace(self.H0[0], self.H0[-1], 100000)
y_highres = sp(x_highres)
return x_highres[np.argmax(y_highres)]