-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_pca.py
212 lines (155 loc) · 6.66 KB
/
main_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from subnet import SignetLinear, SignetConv2d
from utils import *
import numpy as np
import pandas as pd
from mpl_toolkits.mplot3d import axes3d, Axes3D #<-- Note the capitalization!
import matplotlib.pyplot as plt
net_type = 'subnet'
sub_type = 'softnet'
epochs = 100
lr_rate = 1e-2
# download datasets
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
df = pd.read_csv(url, names=['sepal length','sepal width','petal length','petal width','target'])
#print(df.head())
x = df.drop(['target'], axis=1).values # 독립변인들의 value값만 추출
y = df['target'].values # 종속변인 추출
# define datasets
dataset = df
mappings = {
"Iris-setosa": 0,
"Iris-versicolor": 1,
"Iris-virginica": 2
}
dataset["target"] = dataset["target"].apply(lambda x: mappings[x])
#print(dataset)
X = dataset.drop("target",axis=1).values
y = dataset["target"].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20)
X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)
if True:
X_train += torch.randn_like(X_train)
X_test += torch.randn_like(X_test)
def get_mask(model):
task_mask = {}
for name, module in model.named_modules():
# For the time being we only care about the current task outputhead
if 'last' in name:
if name != 'last.' + str(task_id):
continue
if isinstance(module, SignetLinear) or isinstance(module, SignetConv2d):
task_mask[name + '.weight'] = module.weight_mask.detach().clone().float()
if getattr(module, 'bias') is not None:
task_mask[name + '.bias'] = module.bias_mask.detach().clone().float()
else:
task_mask[name + '.bias'] = None
return task_mask
# define models
class Model(nn.Module):
def __init__(self, input_features=4, hidden_layer1=25, hidden_layer2=30, output_features=3):
super().__init__()
self.fc1 = nn.Linear(input_features,hidden_layer1)
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
self.out = nn.Linear(hidden_layer2, output_features)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.out(x)
return x
class Subnet(nn.Module):
def __init__(self, input_features=4,
hidden_layer1=25, hidden_layer2=30, output_features=3,
sub_type='hardnet'):
super().__init__()
self.fc1 = SignetLinear(input_features, hidden_layer1, sub_type=sub_type)
self.fc2 = SignetLinear(hidden_layer1, hidden_layer2, sub_type=sub_type)
self.out = SignetLinear(hidden_layer2, output_features, sub_type=sub_type)
def forward(self, x, mask=None):
if mask is None:
mask = {}
mask['fc1.weight'] = None
mask['fc2.weight'] = None
mask['out.weight'] = None
x = F.relu(self.fc1(x, mask['fc1.weight']))
x = F.relu(self.fc2(x, mask['fc2.weight']))
x = self.out(x, mask['out.weight'])
return x
# train models
def train(model, X_train, y_train, criterion, optimizer, subnet=False):
losses = []
model_list = []
mask_list = []
for i in range(epochs):
y_pred = model.forward(X_train)
loss = criterion(y_pred, y_train)
losses.append(loss.item())
if i % 10 == 0:
print(f'epoch: {i:2} loss: {loss.item():10.8f}')
model_list.append(model)
if subnet:
mask = get_mask(model)
mask_list.append(mask)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return losses, model_list, mask_list
# test models
def test(model, X_test, y_test, mask=None):
preds = []
with torch.no_grad():
for val in X_test:
if mask is not None:
y_hat = model.forward(val, mask)
else:
y_hat = model.forward(val)
preds.append(y_hat.argmax().item())
return preds
# --- dense network ---------
model = Model()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr_rate)
dense_losses, dense_model,_ = train(model, X_train, y_train, criterion, optimizer)
preds = test(model, X_test, y_test)
df = pd.DataFrame({'Y': y_test, 'YHat': preds})
df['dense_Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Y'], df['YHat'])]
loss_dense = loss_landscape(model, criterion, X_test, y_test, 'dense')
del model
# --- hard network ---------
model = Subnet(sub_type='hardnet')
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr_rate)
hardnet_losses, hardnet_model, hardnet_mask_list = train(model, X_train, y_train, criterion, optimizer, subnet=True)
hardnet_mask = get_mask(model)
preds = test(model, X_test, y_test, hardnet_mask)
df['hardnet_Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Y'], df['YHat'])]
loss_hardnet = loss_landscape(model, criterion, X_test, y_test, 'hardnet', hardnet_mask)
del model
# --- soft network ---------
model = Subnet(sub_type='softnet')
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr_rate)
softnet_losses, softnet_model, softnet_mask_list = train(model, X_train, y_train, criterion, optimizer, subnet=True)
softnet_mask = get_mask(model)
preds = test(model, X_test, y_test, softnet_mask)
df['softnet_Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Y'], df['YHat'])]
loss_softnet = loss_landscape(model, criterion, X_test, y_test, 'softnet', softnet_mask)
print('test acc. of densenet:{}'.format(df['dense_Correct'].mean() * 100.0))
print('test acc. of hardnet:{}'.format(df['hardnet_Correct'].mean() * 100.0))
print('test acc. of softnet:{}'.format(df['softnet_Correct'].mean() * 100.0))
del model
plot_trisurf(loss_dense, loss_hardnet, loss_softnet, epoch=100)
epoch_list = [0,10,20,30,40,50,60,70,80,90]
for densenet, hardnet, softnet, epoch, hardnet_mask, softnet_mask in zip(dense_model, hardnet_model, softnet_model, epoch_list, hardnet_mask_list, softnet_mask_list):
loss_dense = loss_landscape(densenet, criterion, X_test, y_test, 'dense')
loss_hardnet = loss_landscape(hardnet, criterion, X_test, y_test, 'hardnet', hardnet_mask)
loss_softnet = loss_landscape(softnet, criterion, X_test, y_test, 'softnet', softnet_mask)
plot_trisurf(loss_dense, loss_hardnet, loss_softnet, epoch=epoch)
plot_losses(epochs, dense_losses, hardnet_losses, softnet_losses)