-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathxvector_GaussianBackend_pytorch.py
executable file
·144 lines (109 loc) · 6 KB
/
xvector_GaussianBackend_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 3 21:15:54 2019
@author: shreyasr
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import os
import sys
import random
import pickle
import subprocess
from utils.NpldaConf import NpldaConf
from pdb import set_trace as bp
from utils.sv_trials_loaders import combine_trials_and_get_loader, get_trials_loaders_dict, load_xvec_from_numbatch, load_xvec_from_idbatch
from datetime import datetime
import logging
from utils.models import GaussianBackend
def train(nc, model, train_loader, mega_xvec_dict, num_to_id_dict):
model.eval()
target_sum = torch.zeros(model.paired_mean_target.shape)
non_target_sum = torch.zeros(model.paired_mean_target.shape)
target_sq_sum = torch.zeros(model.paired_cov_inv_target.shape)
non_target_sq_sum = torch.zeros(model.paired_cov_inv_target.shape)
target_count = 0
non_target_count = 0
with torch.no_grad():
for data1, data2, target in train_loader:
data1_xvec, data2_xvec = load_xvec_from_numbatch(mega_xvec_dict, num_to_id_dict, data1, data2, device=torch.device('cpu'))
x = model.forward_getpaired(data1,data2)
target_count += target.sum().item()
if target.sum().item() >= 0.5:
target_sum += x[target>0.5].sum(dim=0)
target_sq_sum += x[target>0.5].t() @ x[target>0.5]
non_target_count += (1-target).sum().item()
if (1-target).sum().item() >= 0.5:
non_target_sum += x[target<0.5].sum(dim=0)
non_target_sq_sum += x[target<0.5].t() @ x[target<0.5]
model.paired_mean_target = target_sum/target_count
model.paired_cov_inv_target = torch.inverse(target_sq_sum/target_count - (model.paired_mean_target[:,np.newaxis] @ model.paired_mean_target[np.newaxis,:]))
model.paired_mean_nontarget = non_target_sum/(non_target_count-1)
model.paired_cov_inv_nontarget = torch.inverse(non_target_sq_sum/(non_target_count-1)- (model.paired_mean_nontarget[:,np.newaxis] @ model.paired_mean_nontarget[np.newaxis,:]))
return model
def validate(nc, model, data_loader, mega_xvec_dict, num_to_id_dict, device=torch.device('cpu')):
model.eval()
with torch.no_grad():
targets, scores = torch.tensor([]).to(device), torch.tensor([]).to(device)
for data1, data2, target in data_loader:
data1, data2, target = data1.to(device), data2.to(device), target.to(device)
data1_xvec, data2_xvec = load_xvec_from_numbatch(mega_xvec_dict, num_to_id_dict, data1, data2,
device)
targets = torch.cat((targets, target))
scores_batch = model.forward(data1_xvec, data2_xvec)
scores = torch.cat((scores, scores_batch))
soft_cdet_loss = model.softcdet(scores, targets)
cdet_mdl = model.cdet(scores, targets)
minc, minc_threshold = model.minc(scores, targets)
logging.info('\n\nTest set: C_det (mdl): {:.4f}\n'.format(cdet_mdl))
logging.info('Test set: soft C_det (mdl): {:.4f}\n'.format(soft_cdet_loss))
logging.info('Test set: C_min: {:.4f}\n'.format(minc))
for beta in nc.beta:
logging.info('Test set: argmin threshold [{}]: {:.4f}\n'.format(beta, minc_threshold[beta]))
print('\n\nTest set: C_det (mdl): {:.4f}\n'.format(cdet_mdl))
print('Test set: soft C_det (mdl): {:.4f}\n'.format(soft_cdet_loss))
print('Test set: C_min: {:.4f}\n'.format(minc))
for beta in nc.beta:
print('Test set: argmin threshold [{}]: {:.4f}\n'.format(beta, minc_threshold[beta]))
return minc, minc_threshold
def main_GB():
timestamp = int(datetime.timestamp(datetime.now()))
print(timestamp)
logging.basicConfig(filename='logs/kaldiplda_{}.log'.format(timestamp),
filemode='a',
format='%(levelname)s: %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
# %% Configure Training
configfile = 'conf/voices_config.cfg'
nc = NpldaConf(configfile)
torch.manual_seed(nc.seed)
np.random.seed(nc.seed)
random.seed(nc.seed)
logging.info("Started at {}.\n\n GAUSSIAN BACKEND \n\n".format(datetime.now()))
nc.device='cpu' #CPU enough for GB
print("Running on {}...".format(nc.device))
logging.info("\nConfiguration:\n\n{}\n\n".format(''.join(open(configfile,'r').readlines())))
logging.info("Running on {} ...\n".format(nc.device))
# %%Load the generated training data trials and make loaders here
mega_xvec_dict = pickle.load(open(nc.mega_xvector_pkl, 'rb'))
num_to_id_dict = {i: j for i, j in enumerate(list(mega_xvec_dict))}
id_to_num_dict = {v: k for k, v in num_to_id_dict.items()}
train_loader = combine_trials_and_get_loader(nc.training_data_trials_list, id_to_num_dict, batch_size=nc.batch_size)
# train_loader_sampled = combine_trials_and_get_loader(nc.training_data_trials_list, id_to_num_dict, batch_size=nc.batch_size, subset=0.05)
valid_loaders_dict = get_trials_loaders_dict(nc.validation_trials_list, id_to_num_dict, batch_size=5*nc.batch_size)
model = GaussianBackend()
train(nc, model, train_loader, mega_xvec_dict, num_to_id_dict)
for val_set, valid_loader in valid_loaders_dict.items():
print("Validating {}".format(val_set))
minc, minc_threshold = validate(nc, model, valid_loader, mega_xvec_dict, num_to_id_dict)
model.SaveModel("models/GaussianBackend_swbd_sre_mx6.{}.pt".format(timestamp))
for trial_file in nc.test_trials_list:
print("Generating scores for Gaussian Backend for trial file {}".format(trial_file))
nc.generate_scorefile("scores/GaussianBackend_{}_{}.txt".format(os.path.splitext(os.path.basename(trial_file))[0], timestamp), trial_file, mega_xvec_dict, model, nc.device)
if __name__ == '__main__':
main_GB()