-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsa_plots.py
209 lines (192 loc) · 7.21 KB
/
tsa_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
obtained from: https://github.com/Kaggle/learntools/blob/master/learntools/time_series/utils.py
'''
import matplotlib.pyplot as plt
import pandas as pd
def moving_avg_7_30_365_days_plots(timeseries, title, loc='upper left'):
'''
The [loc]ation of the legend.
The strings 'upper left', 'upper right', 'lower left', 'lower right' place the legend at the corresponding corner of the axes/figure.
The strings 'upper center', 'lower center', 'center left', 'center right' place the legend at the center of the corresponding edge of the axes/figure.
The string 'center' places the legend at the center of the axes/figure.
The string 'best' places the legend at the location, among the nine locations defined
'''
plt.figure(figsize=(16,4))
plt.plot(timeseries.rolling(window=7,
center=True,
).mean(),
label='Moving Average 7 Days');
plt.plot(timeseries.rolling(window=30,
center=True,
min_periods=15,
).mean(),
label='Moving Average 30 Days');
plt.plot(timeseries.rolling(window=365,
center=True,
min_periods=183,
).mean(),
label='Moving Average 365 Days');
plt.title(title + " - 7/30/365-Day Moving Average");
plt.legend(loc=loc);
# annotations: https://stackoverflow.com/a/49238256/5769929
def seasonal_plot(X, y, period, freq, ax=None):
import seaborn as sns
if ax is None:
_, ax = plt.subplots()
palette = sns.color_palette("husl", n_colors=X[period].nunique(),)
ax = sns.lineplot(
x=freq,
y=y,
hue=period,
data=X,
ci=False,
ax=ax,
palette=palette,
legend=False,
)
ax.set_title(f"Seasonal Plot ({period}/{freq})")
for line, name in zip(ax.lines, X[period].unique()):
y_ = line.get_ydata()[-1]
ax.annotate(
name,
xy=(1, y_),
xytext=(6, 0),
color=line.get_color(),
xycoords=ax.get_yaxis_transform(),
textcoords="offset points",
size=14,
va="center",
)
return ax
def plot_periodogram(ts, detrend='linear', ax=None):
from scipy.signal import periodogram
fs = pd.Timedelta("1Y") / pd.Timedelta("1D")
frequencies, spectrum = periodogram(
ts,
fs=fs,
detrend=detrend,
window="boxcar",
scaling='spectrum',
)
if ax is None:
_, ax = plt.subplots()
ax.step(frequencies, spectrum, color="purple")
ax.set_xscale("log")
ax.set_xticks([1, 2, 4, 6, 12, 26, 52, 104])
ax.set_xticklabels(
[
"Annual (1)",
"Semiannual (2)",
"Quarterly (4)",
"Bimonthly (6)",
"Monthly (12)",
"Biweekly (26)",
"Weekly (52)",
"Semiweekly (104)",
],
rotation=30,
)
ax.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax.set_ylabel("Variance")
ax.set_title("Periodogram")
return ax
def plot_lags(x,
y=None,
lags=6,
leads=None,
nrows=1,
lagplot_kwargs={},
**kwargs):
import math
kwargs.setdefault('nrows', nrows)
orig = leads is not None
leads = leads or 0
kwargs.setdefault('ncols', math.ceil((lags + orig + leads) / nrows))
kwargs.setdefault('figsize', (kwargs['ncols'] * 2, nrows * 2 + 0.5))
fig, axs = plt.subplots(sharex=True, sharey=True, squeeze=False, **kwargs)
for ax, k in zip(fig.get_axes(), range(kwargs['nrows'] * kwargs['ncols'])):
k -= leads + orig
if k + 1 <= lags:
ax = lagplot(x, y, shift=k + 1, ax=ax, **lagplot_kwargs)
title = f"Lag {k + 1}" if k + 1 >= 0 else f"Lead {-k - 1}"
ax.set_title(title, fontdict=dict(fontsize=14))
ax.set(xlabel="", ylabel="")
else:
ax.axis('off')
plt.setp(axs[-1, :], xlabel=x.name)
plt.setp(axs[:, 0], ylabel=y.name if y is not None else x.name)
fig.tight_layout(w_pad=0.1, h_pad=0.1)
return fig
def lagplot(x, y=None, shift=1, standardize=False, ax=None, **kwargs):
from matplotlib.offsetbox import AnchoredText
import seaborn as sns
x_ = x.shift(shift)
if standardize:
x_ = (x_ - x_.mean()) / x_.std()
if y is not None:
y_ = (y - y.mean()) / y.std() if standardize else y
else:
y_ = x
corr = y_.corr(x_)
if ax is None:
fig, ax = plt.subplots()
scatter_kws = dict(
alpha=0.75,
s=3,
)
line_kws = dict(color='C3', )
ax = sns.regplot(x=x_,
y=y_,
scatter_kws=scatter_kws,
line_kws=line_kws,
lowess=True,
ax=ax,
**kwargs)
at = AnchoredText(
f"{corr:.2f}",
prop=dict(size="large"),
frameon=True,
loc="upper left",
)
at.patch.set_boxstyle("square, pad=0.0")
ax.add_artist(at)
title = f"Lag {shift}" if shift > 0 else f"Lead {shift}"
ax.set(title=f"Lag {shift}", xlabel=x_.name, ylabel=y_.name)
return ax
'''
obtained from: https://gist.github.com/javiferfer/ba280cae79a86d6994ac8351df1f3756
'''
def analyze_stationarity(timeseries, title):
fig, ax = plt.subplots(3, 1, figsize=(16, 10))
rolmean = pd.Series(timeseries).rolling(window=7, center=True).mean()
rolstd = pd.Series(timeseries).rolling(window=7, center=True).std()
ax[0].plot(timeseries, label= title, alpha=0.5)
ax[0].plot(rolmean, label='Moving Average');
ax[0].plot(rolstd, label='Moving Std (x10)', alpha=0.7);
ax[0].set_title('7-Day Window')
ax[0].legend()
rolmean = pd.Series(timeseries).rolling(window=30, center=True, min_periods=15).mean()
rolstd = pd.Series(timeseries).rolling(window=30, center=True, min_periods=15).std()
ax[1].plot(timeseries, label= title, alpha=0.5)
ax[1].plot(rolmean, label='Moving Average');
ax[1].plot(rolstd, label='Moving Std (x10)');
ax[1].set_title('30-Day Window')
ax[1].legend()
rolmean = pd.Series(timeseries).rolling(window=365, center=True, min_periods=183).mean()
rolstd = pd.Series(timeseries).rolling(window=365, center=True, min_periods=183).std()
ax[2].plot(timeseries, label= title, alpha=0.5)
ax[2].plot(rolmean, label='Moving Average');
ax[2].plot(rolstd, label='Moving Std (x10)');
ax[2].set_title('365-Day Window')
ax[2].legend()
def moving_avg_7_30_365_days_plots_alternative(timeseries, title):
fig, ax = plt.subplots(figsize=(16, 4))
rolmean_7 = pd.Series(timeseries).rolling(window=7, center=True).mean()
rolmean_30 = pd.Series(timeseries).rolling(window=30, center=True, min_periods=15).mean()
rolmean_365 = pd.Series(timeseries).rolling(window=365, center=True, min_periods=183).mean()
ax.plot(timeseries, label= title, alpha=0.7)
ax.plot(rolmean_7, label='Moving Average 7 Days');
ax.plot(rolmean_30, label='Moving Average 30 Days');
ax.plot(rolmean_365, label='Moving Average 365 Days');
ax.set_title(title + ' - 7/30/365-Day Window')
ax.legend()