forked from jrothschild33/learn_backtrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lesson1.py
148 lines (127 loc) · 6.74 KB
/
Lesson1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Lesson1:Backtrader来啦
# link: https://mp.weixin.qq.com/s/7S4AnbUfQy2kCZhuFN1dZw
#%%
import backtrader as bt
import pandas as pd
import datetime
# 实例化 cerebro
cerebro = bt.Cerebro()
daily_price = pd.read_csv("Data/daily_price.csv", parse_dates=['datetime'])
trade_info = pd.read_csv("Data/trade_info.csv", parse_dates=['trade_date'])
#%%
# 按股票代码,依次循环传入数据
for stock in daily_price['sec_code'].unique():
# 日期对齐
data = pd.DataFrame(daily_price['datetime'].unique(), columns=['datetime']) # 获取回测区间内所有交易日
df = daily_price.query(f"sec_code=='{stock}'")[
['datetime', 'open', 'high', 'low', 'close', 'volume', 'openinterest']]
data_ = pd.merge(data, df, how='left', on='datetime')
data_ = data_.set_index("datetime")
# print(data_.dtypes)
# 缺失值处理:日期对齐时会使得有些交易日的数据为空,所以需要对缺失数据进行填充
data_.loc[:, ['volume', 'openinterest']] = data_.loc[:, ['volume', 'openinterest']].fillna(0)
data_.loc[:, ['open', 'high', 'low', 'close']] = data_.loc[:, ['open', 'high', 'low', 'close']].fillna(method='pad')
data_.loc[:, ['open', 'high', 'low', 'close']] = data_.loc[:, ['open', 'high', 'low', 'close']].fillna(0)
# 导入数据
datafeed = bt.feeds.PandasData(dataname=data_, fromdate=datetime.datetime(2019, 1, 2),
todate=datetime.datetime(2021, 1, 28))
cerebro.adddata(datafeed, name=stock) # 通过 name 实现数据集与股票的一一对应
print(f"{stock} Done !")
print("All stock Done !")
#%%
# 回测策略
class TestStrategy(bt.Strategy):
'''选股策略'''
params = (('maperiod', 15),
('printlog', False),)
def __init__(self):
self.buy_stock = trade_info # 保留调仓列表
# 读取调仓日期,即每月的最后一个交易日,回测时,会在这一天下单,然后在下一个交易日,以开盘价买入
self.trade_dates = pd.to_datetime(self.buy_stock['trade_date'].unique()).tolist()
self.order_list = [] # 记录以往订单,方便调仓日对未完成订单做处理
self.buy_stocks_pre = [] # 记录上一期持仓
def next(self):
dt = self.datas[0].datetime.date(0) # 获取当前的回测时间点
# 如果是调仓日,则进行调仓操作
if dt in self.trade_dates:
print("--------------{} 为调仓日----------".format(dt))
# 在调仓之前,取消之前所下的没成交也未到期的订单
if len(self.order_list) > 0:
for od in self.order_list:
self.cancel(od) # 如果订单未完成,则撤销订单
self.order_list = [] # 重置订单列表
# 提取当前调仓日的持仓列表
buy_stocks_data = self.buy_stock.query(f"trade_date=='{dt}'")
long_list = buy_stocks_data['sec_code'].tolist()
print('long_list', long_list) # 打印持仓列表
# 对现有持仓中,调仓后不再继续持有的股票进行卖出平仓
sell_stock = [i for i in self.buy_stocks_pre if i not in long_list]
print('sell_stock', sell_stock) # 打印平仓列表
if len(sell_stock) > 0:
print("-----------对不再持有的股票进行平仓--------------")
for stock in sell_stock:
data = self.getdatabyname(stock)
if self.getposition(data).size > 0:
od = self.close(data=data)
self.order_list.append(od) # 记录卖出订单
# 买入此次调仓的股票:多退少补原则
print("-----------买入此次调仓期的股票--------------")
for stock in long_list:
w = buy_stocks_data.query(f"sec_code=='{stock}'")['weight'].iloc[0] # 提取持仓权重
data = self.getdatabyname(stock)
order = self.order_target_percent(data=data, target=w * 0.95) # 为减少可用资金不足的情况,留 5% 的现金做备用
self.order_list.append(order)
self.buy_stocks_pre = long_list # 保存此次调仓的股票列表
# 交易记录日志(可省略,默认不输出结果)
def log(self, txt, dt=None, doprint=False):
if self.params.printlog or doprint:
dt = dt or self.datas[0].datetime.date(0)
print(f'{dt.isoformat()},{txt}')
def notify_order(self, order):
# 未被处理的订单
if order.status in [order.Submitted, order.Accepted]:
return
# 已经处理的订单
if order.status in [order.Completed, order.Canceled, order.Margin]:
if order.isbuy():
self.log(
'BUY EXECUTED, ref:%.0f,Price: %.2f, Cost: %.2f, Comm %.2f, Size: %.2f, Stock: %s' %
(order.ref, # 订单编号
order.executed.price, # 成交价
order.executed.value, # 成交额
order.executed.comm, # 佣金
order.executed.size, # 成交量
order.data._name)) # 股票名称
else: # Sell
self.log('SELL EXECUTED, ref:%.0f, Price: %.2f, Cost: %.2f, Comm %.2f, Size: %.2f, Stock: %s' %
(order.ref,
order.executed.price,
order.executed.value,
order.executed.comm,
order.executed.size,
order.data._name))
# 初始资金 100,000,000
cerebro.broker.setcash(100000000.0)
# 佣金,双边各 0.0003
cerebro.broker.setcommission(commission=0.0003)
# 滑点:双边各 0.0001
cerebro.broker.set_slippage_perc(perc=0.005)
cerebro.addanalyzer(bt.analyzers.TimeReturn, _name='pnl') # 返回收益率时序数据
cerebro.addanalyzer(bt.analyzers.AnnualReturn, _name='_AnnualReturn') # 年化收益率
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='_SharpeRatio') # 夏普比率
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='_DrawDown') # 回撤
# 将编写的策略添加给大脑,别忘了 !
cerebro.addstrategy(TestStrategy, printlog=True)
# 启动回测
result = cerebro.run()
# 从返回的 result 中提取回测结果
strat = result[0]
# 返回日度收益率序列
daily_return = pd.Series(strat.analyzers.pnl.get_analysis())
# 打印评价指标
print("--------------- AnnualReturn -----------------")
print(strat.analyzers._AnnualReturn.get_analysis())
print("--------------- SharpeRatio -----------------")
print(strat.analyzers._SharpeRatio.get_analysis())
print("--------------- DrawDown -----------------")
print(strat.analyzers._DrawDown.get_analysis())