|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 52, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "import math\n", |
| 12 | + "import statsmodels.api as sm\n", |
| 13 | + "from scipy.stats import chisquare\n", |
| 14 | + "\n", |
| 15 | + "\n", |
| 16 | + "import settings\n", |
| 17 | + "import itertools\n", |
| 18 | + "from sklearn.preprocessing import (LabelBinarizer, LabelEncoder, MinMaxScaler,\n", |
| 19 | + " OneHotEncoder, StandardScaler, RobustScaler)\n", |
| 20 | + "\n", |
| 21 | + "\n", |
| 22 | + "\n", |
| 23 | + "\n", |
| 24 | + "def get_encoders(le_name,ohe_name,scaler_name):\n", |
| 25 | + " le_encoder = np.load(settings.models_path + le_name + '.npy').item()\n", |
| 26 | + " ohe_encoder = np.load(settings.models_path + ohe_name + '.npy').item()\n", |
| 27 | + " scaler = np.load(settings.models_path + scaler_name + '.npy').item()\n", |
| 28 | + "\n", |
| 29 | + " return le_encoder,ohe_encoder,scaler\n", |
| 30 | + "\n", |
| 31 | + "\n", |
| 32 | + "def create_encoder(df, le_name = None, ohe_name = None, scaler_name=None, categorical_features=None, numeric_features=None):\n", |
| 33 | + " \"\"\"Creates and stores a categorical encoder of a given dataframe\n", |
| 34 | + " \n", |
| 35 | + " Arguments:\n", |
| 36 | + " df {Dataframe} -- The Pandas Dataframe to encode\n", |
| 37 | + " \n", |
| 38 | + " Keyword Arguments:\n", |
| 39 | + " categorical_features {list} -- The list of categorical features to consider (default: {None})\n", |
| 40 | + " numeric_features {list} -- The list of non categorical features to ignore (default: {None})\n", |
| 41 | + " \n", |
| 42 | + " Returns:\n", |
| 43 | + " tuple(dict,dict,OneHotEncoder) -- Return the encoders used in every columns as a dictionnary\n", |
| 44 | + " \"\"\"\n", |
| 45 | + "\n", |
| 46 | + "\n", |
| 47 | + " if (categorical_features is None):\n", |
| 48 | + " categorical_features = sorted(df.drop(numeric_features,axis=1).columns)\n", |
| 49 | + " le_dict = {}\n", |
| 50 | + " ohe_dict = {}\n", |
| 51 | + " scalers = {}\n", |
| 52 | + " for index, col in df[categorical_features].sort_index(axis=1).iteritems():\n", |
| 53 | + " if (numeric_features is not None) and (index in numeric_features):\n", |
| 54 | + " continue\n", |
| 55 | + " if index not in categorical_features:\n", |
| 56 | + " continue\n", |
| 57 | + " le = LabelEncoder().fit(col)\n", |
| 58 | + " le_dict[index] = le\n", |
| 59 | + " ohe = OneHotEncoder(categories=\"auto\").fit(le.transform(col).reshape((-1, 1)))\n", |
| 60 | + " ohe_dict[index] = ohe\n", |
| 61 | + "\n", |
| 62 | + " labeled_df = df[categorical_features].sort_index(axis=1).apply(lambda x: le_dict[x.name].transform(x))\n", |
| 63 | + " ohe_encoder = OneHotEncoder(categories=\"auto\").fit(labeled_df)\n", |
| 64 | + "\n", |
| 65 | + " # add numeric features\n", |
| 66 | + " if len(numeric_features)==0:\n", |
| 67 | + " numeric_features = (list(df.columns.to_series().groupby(df.dtypes).groups[np.dtype('float64')]))\n", |
| 68 | + " for f in numeric_features:\n", |
| 69 | + " values = df[[f]].values\n", |
| 70 | + " scaler = MinMaxScaler().fit(values)\n", |
| 71 | + " scalers[f] = scaler\n", |
| 72 | + "\n", |
| 73 | + "\n", |
| 74 | + " # if le_name is not None:\n", |
| 75 | + " # np.save(settings.models_path + le_name + '.npy', le_dict)\n", |
| 76 | + " # if ohe_name is not None:\n", |
| 77 | + " # np.save(settings.models_path + ohe_name + '.npy', ohe_encoder)\n", |
| 78 | + " # if scaler_name is not None:\n", |
| 79 | + " # np.save(settings.models_path + scaler_name + '.npy', scalers)\n", |
| 80 | + " \n", |
| 81 | + " return labeled_df, le_dict, ohe_encoder, scalers, categorical_features, numeric_features\n", |
| 82 | + " \n" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 66, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "data": { |
| 92 | + "text/html": [ |
| 93 | + "<div>\n", |
| 94 | + "<style scoped>\n", |
| 95 | + " .dataframe tbody tr th:only-of-type {\n", |
| 96 | + " vertical-align: middle;\n", |
| 97 | + " }\n", |
| 98 | + "\n", |
| 99 | + " .dataframe tbody tr th {\n", |
| 100 | + " vertical-align: top;\n", |
| 101 | + " }\n", |
| 102 | + "\n", |
| 103 | + " .dataframe thead th {\n", |
| 104 | + " text-align: right;\n", |
| 105 | + " }\n", |
| 106 | + "</style>\n", |
| 107 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 108 | + " <thead>\n", |
| 109 | + " <tr style=\"text-align: right;\">\n", |
| 110 | + " <th></th>\n", |
| 111 | + " <th>Color</th>\n", |
| 112 | + " <th>Size</th>\n", |
| 113 | + " <th>Ldate</th>\n", |
| 114 | + " <th>Age Group</th>\n", |
| 115 | + " <th>Person</th>\n", |
| 116 | + " <th>Pname</th>\n", |
| 117 | + " <th>Ptype</th>\n", |
| 118 | + " <th>Tprice</th>\n", |
| 119 | + " <th>Currency</th>\n", |
| 120 | + " <th>Sales Season</th>\n", |
| 121 | + " <th>s1</th>\n", |
| 122 | + " <th>s2</th>\n", |
| 123 | + " <th>s3</th>\n", |
| 124 | + " <th>s4</th>\n", |
| 125 | + " <th>s5</th>\n", |
| 126 | + " </tr>\n", |
| 127 | + " <tr>\n", |
| 128 | + " <th>Product</th>\n", |
| 129 | + " <th></th>\n", |
| 130 | + " <th></th>\n", |
| 131 | + " <th></th>\n", |
| 132 | + " <th></th>\n", |
| 133 | + " <th></th>\n", |
| 134 | + " <th></th>\n", |
| 135 | + " <th></th>\n", |
| 136 | + " <th></th>\n", |
| 137 | + " <th></th>\n", |
| 138 | + " <th></th>\n", |
| 139 | + " <th></th>\n", |
| 140 | + " <th></th>\n", |
| 141 | + " <th></th>\n", |
| 142 | + " <th></th>\n", |
| 143 | + " <th></th>\n", |
| 144 | + " </tr>\n", |
| 145 | + " </thead>\n", |
| 146 | + " <tbody>\n", |
| 147 | + " <tr>\n", |
| 148 | + " <th>3E+101_2</th>\n", |
| 149 | + " <td>Blue</td>\n", |
| 150 | + " <td>Thick</td>\n", |
| 151 | + " <td>45</td>\n", |
| 152 | + " <td>4-6</td>\n", |
| 153 | + " <td>Girls</td>\n", |
| 154 | + " <td>One Internal Pants</td>\n", |
| 155 | + " <td>Thick</td>\n", |
| 156 | + " <td>39.0</td>\n", |
| 157 | + " <td>$</td>\n", |
| 158 | + " <td>Winter</td>\n", |
| 159 | + " <td>101.0</td>\n", |
| 160 | + " <td>261.0</td>\n", |
| 161 | + " <td>309.0</td>\n", |
| 162 | + " <td>297.0</td>\n", |
| 163 | + " <td>323.0</td>\n", |
| 164 | + " </tr>\n", |
| 165 | + " <tr>\n", |
| 166 | + " <th>3E+201_2</th>\n", |
| 167 | + " <td>Red</td>\n", |
| 168 | + " <td>Thick</td>\n", |
| 169 | + " <td>45</td>\n", |
| 170 | + " <td>4-6</td>\n", |
| 171 | + " <td>Girls</td>\n", |
| 172 | + " <td>One Internal Pants</td>\n", |
| 173 | + " <td>Thick</td>\n", |
| 174 | + " <td>39.0</td>\n", |
| 175 | + " <td>$</td>\n", |
| 176 | + " <td>Winter</td>\n", |
| 177 | + " <td>81.0</td>\n", |
| 178 | + " <td>266.0</td>\n", |
| 179 | + " <td>297.0</td>\n", |
| 180 | + " <td>270.0</td>\n", |
| 181 | + " <td>257.0</td>\n", |
| 182 | + " </tr>\n", |
| 183 | + " <tr>\n", |
| 184 | + " <th>3E+301_2</th>\n", |
| 185 | + " <td>Blue</td>\n", |
| 186 | + " <td>Thick</td>\n", |
| 187 | + " <td>45</td>\n", |
| 188 | + " <td>4-6</td>\n", |
| 189 | + " <td>Girls</td>\n", |
| 190 | + " <td>One Internal Pants</td>\n", |
| 191 | + " <td>Thick</td>\n", |
| 192 | + " <td>39.0</td>\n", |
| 193 | + " <td>$</td>\n", |
| 194 | + " <td>Winter</td>\n", |
| 195 | + " <td>49.0</td>\n", |
| 196 | + " <td>179.0</td>\n", |
| 197 | + " <td>190.0</td>\n", |
| 198 | + " <td>192.0</td>\n", |
| 199 | + " <td>179.0</td>\n", |
| 200 | + " </tr>\n", |
| 201 | + " <tr>\n", |
| 202 | + " <th>30E000400_2</th>\n", |
| 203 | + " <td>Black</td>\n", |
| 204 | + " <td>Thick</td>\n", |
| 205 | + " <td>45</td>\n", |
| 206 | + " <td>4-6</td>\n", |
| 207 | + " <td>Girls</td>\n", |
| 208 | + " <td>One Internal Pants</td>\n", |
| 209 | + " <td>Thick</td>\n", |
| 210 | + " <td>39.0</td>\n", |
| 211 | + " <td>$</td>\n", |
| 212 | + " <td>Winter</td>\n", |
| 213 | + " <td>55.0</td>\n", |
| 214 | + " <td>222.0</td>\n", |
| 215 | + " <td>261.0</td>\n", |
| 216 | + " <td>275.0</td>\n", |
| 217 | + " <td>279.0</td>\n", |
| 218 | + " </tr>\n", |
| 219 | + " <tr>\n", |
| 220 | + " <th>30E823101_2</th>\n", |
| 221 | + " <td>Grey</td>\n", |
| 222 | + " <td>No Size</td>\n", |
| 223 | + " <td>39</td>\n", |
| 224 | + " <td>4-6</td>\n", |
| 225 | + " <td>Girls</td>\n", |
| 226 | + " <td>One Internal Pants</td>\n", |
| 227 | + " <td>Thick</td>\n", |
| 228 | + " <td>39.0</td>\n", |
| 229 | + " <td>$</td>\n", |
| 230 | + " <td>Winter</td>\n", |
| 231 | + " <td>3.0</td>\n", |
| 232 | + " <td>15.0</td>\n", |
| 233 | + " <td>18.0</td>\n", |
| 234 | + " <td>30.0</td>\n", |
| 235 | + " <td>30.0</td>\n", |
| 236 | + " </tr>\n", |
| 237 | + " </tbody>\n", |
| 238 | + "</table>\n", |
| 239 | + "</div>" |
| 240 | + ], |
| 241 | + "text/plain": [ |
| 242 | + " Color Size Ldate Age Group Person Pname \\\n", |
| 243 | + "Product \n", |
| 244 | + "3E+101_2 Blue Thick 45 4-6 Girls One Internal Pants \n", |
| 245 | + "3E+201_2 Red Thick 45 4-6 Girls One Internal Pants \n", |
| 246 | + "3E+301_2 Blue Thick 45 4-6 Girls One Internal Pants \n", |
| 247 | + "30E000400_2 Black Thick 45 4-6 Girls One Internal Pants \n", |
| 248 | + "30E823101_2 Grey No Size 39 4-6 Girls One Internal Pants \n", |
| 249 | + "\n", |
| 250 | + " Ptype Tprice Currency Sales Season s1 s2 s3 s4 \\\n", |
| 251 | + "Product \n", |
| 252 | + "3E+101_2 Thick 39.0 $ Winter 101.0 261.0 309.0 297.0 \n", |
| 253 | + "3E+201_2 Thick 39.0 $ Winter 81.0 266.0 297.0 270.0 \n", |
| 254 | + "3E+301_2 Thick 39.0 $ Winter 49.0 179.0 190.0 192.0 \n", |
| 255 | + "30E000400_2 Thick 39.0 $ Winter 55.0 222.0 261.0 275.0 \n", |
| 256 | + "30E823101_2 Thick 39.0 $ Winter 3.0 15.0 18.0 30.0 \n", |
| 257 | + "\n", |
| 258 | + " s5 \n", |
| 259 | + "Product \n", |
| 260 | + "3E+101_2 323.0 \n", |
| 261 | + "3E+201_2 257.0 \n", |
| 262 | + "3E+301_2 179.0 \n", |
| 263 | + "30E000400_2 279.0 \n", |
| 264 | + "30E823101_2 30.0 " |
| 265 | + ] |
| 266 | + }, |
| 267 | + "execution_count": 66, |
| 268 | + "metadata": {}, |
| 269 | + "output_type": "execute_result" |
| 270 | + } |
| 271 | + ], |
| 272 | + "source": [ |
| 273 | + "from data.preprocessing import load_file\n", |
| 274 | + "\n", |
| 275 | + "df = load_file(\"clf_features\", type_=\"P\", index = [\"Product\"])\n", |
| 276 | + "\n", |
| 277 | + "categorical_features = [\"Color\",\"Size\",\"Age Group\",\"Ldate\",\"Person\",\"Pname\",\"Ptype\",\"Currency\",\"Sales Season\"]\n", |
| 278 | + "numeric_features = [\"Tprice\",\"s1\",\"s2\",\"s3\",\"s4\",\"s5\"]\n", |
| 279 | + "df.head()" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": 68, |
| 285 | + "metadata": {}, |
| 286 | + "outputs": [ |
| 287 | + { |
| 288 | + "name": "stdout", |
| 289 | + "output_type": "stream", |
| 290 | + "text": [ |
| 291 | + "23.3 ms ± 3.11 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" |
| 292 | + ] |
| 293 | + } |
| 294 | + ], |
| 295 | + "source": [ |
| 296 | + "%timeit labeled_df, le_dict, ohe_encoder, scalers, categorical_features, num_features = create_encoder(df, numeric_features=numeric_features)" |
| 297 | + ] |
| 298 | + }, |
| 299 | + { |
| 300 | + "cell_type": "code", |
| 301 | + "execution_count": 76, |
| 302 | + "metadata": {}, |
| 303 | + "outputs": [ |
| 304 | + { |
| 305 | + "data": { |
| 306 | + "text/plain": [ |
| 307 | + "numpy.ndarray" |
| 308 | + ] |
| 309 | + }, |
| 310 | + "execution_count": 76, |
| 311 | + "metadata": {}, |
| 312 | + "output_type": "execute_result" |
| 313 | + } |
| 314 | + ], |
| 315 | + "source": [ |
| 316 | + "t= np.zeros((1,1))\n", |
| 317 | + "\n", |
| 318 | + "type(t)" |
| 319 | + ] |
| 320 | + } |
| 321 | + ], |
| 322 | + "metadata": { |
| 323 | + "kernelspec": { |
| 324 | + "display_name": "Python (dev_py36)", |
| 325 | + "language": "python", |
| 326 | + "name": "dev_py36" |
| 327 | + }, |
| 328 | + "language_info": { |
| 329 | + "codemirror_mode": { |
| 330 | + "name": "ipython", |
| 331 | + "version": 3 |
| 332 | + }, |
| 333 | + "file_extension": ".py", |
| 334 | + "mimetype": "text/x-python", |
| 335 | + "name": "python", |
| 336 | + "nbconvert_exporter": "python", |
| 337 | + "pygments_lexer": "ipython3", |
| 338 | + "version": "3.6.6" |
| 339 | + } |
| 340 | + }, |
| 341 | + "nbformat": 4, |
| 342 | + "nbformat_minor": 2 |
| 343 | +} |
0 commit comments