-
Notifications
You must be signed in to change notification settings - Fork 0
/
fid_score.py
executable file
·334 lines (261 loc) · 12.9 KB
/
fid_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectively.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import pathlib
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import numpy as np
import torch
import torchvision.transforms as TF
from PIL import Image
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
import time
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
from pytorch_fid.inception import InceptionV3
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=50,
help='Batch size to use')
parser.add_argument('--num-workers', type=int,
help=('Number of processes to use for data loading. '
'Defaults to `min(8, num_cpus)`'))
parser.add_argument('--device', type=str, default=None,
help='Device to use. Like cuda, cuda:0 or cpu')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('path', type=str, nargs=2,
help=('Paths to the generated images or '
'to .npz statistic files'))
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm',
'tif', 'tiff', 'webp'}
class ImagePathDataset(torch.utils.data.Dataset):
def __init__(self, files, transforms=None):
self.files = files
self.transforms = transforms
def __len__(self):
return len(self.files)
def __getitem__(self, i):
path = self.files[i]
img = Image.open(path).convert('RGB')
if self.transforms is not None:
img = self.transforms(img)
return img
class ArrayPathDataset(torch.utils.data.Dataset):
def __init__(self, array):
self.array = array if torch.is_tensor(array) else torch.from_numpy(array)
def __len__(self):
return len(self.array)
def __getitem__(self, i):
return self.array[i]
def get_activations(files, model, batch_size=50, dims=2048, device='cpu',
num_workers=0, img_size=None):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
if isinstance(files, list):
if img_size is not None:
transforms = TF.Compose([
TF.Resize([img_size]),
TF.CenterCrop(img_size),
TF.ToTensor(),
])
else:
transforms = TF.ToTensor()
dataset = ImagePathDataset(files, transforms=transforms)
elif isinstance(files, torch.utils.data.Dataset):
dataset = files
elif isinstance(files, torch.Tensor) or isinstance(files, np.ndarray):
dataset = ArrayPathDataset(files)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)
pred_arr = np.empty((len(files), dims))
pred_arr_torch = None
start_idx = 0
for batch in tqdm(dataloader):
batch = batch.to(device)
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2)
if pred_arr_torch is None:
pred_arr_torch = pred
else:
pred_arr_torch = torch.cat([pred_arr_torch, pred], dim=0)
start_idx = start_idx + pred.shape[0]
pred_arr = pred_arr_torch.cpu().numpy()
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(files, model, batch_size=50, dims=2048,
device='cpu', num_workers=0, img_size=None):
"""Calculation of the statistics used by the FID.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(files, model, batch_size, dims, device, num_workers, img_size)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def compute_inception_feature_of_path(path, model, batch_size, dims, device,
num_workers=0, img_size=None):
if isinstance(path, str):
path = pathlib.Path(path)
files = sorted([file for ext in IMAGE_EXTENSIONS
for file in path.glob('**/*.{}'.format(ext))])
elif isinstance(path, torch.utils.data.Dataset) or isinstance(path, np.ndarray) or isinstance(path, torch.Tensor):
files = path
elif isinstance(path, list) and os.path.exists(path[0]):
files = path
feature = get_activations(files, model, batch_size, dims, device, num_workers, img_size)
return feature
def compute_statistics_of_path(path, model, batch_size, dims, device,
num_workers=0, load_act=None, save_act=None, img_size=None):
if load_act is not None and os.path.exists(os.path.join(load_act, "statistic.pth")):
act = torch.load(os.path.join(load_act, "statistic.pth"))
m = act["m"]
s = act["s"]
elif load_act is not None and isinstance(load_act, dict):
m = load_act["mu"]
s = load_act["sigma"]
else:
if isinstance(path, str):
path = pathlib.Path(path)
files = sorted([file for ext in IMAGE_EXTENSIONS
for file in path.glob('**/*.{}'.format(ext))])
elif isinstance(path, torch.utils.data.Dataset) or isinstance(path, np.ndarray) or isinstance(path, torch.Tensor):
files = path
elif isinstance(path, list) and os.path.exists(path[0]):
files = path
m, s = calculate_activation_statistics(files, model, batch_size,
dims, device, num_workers, img_size)
if save_act is not None:
os.makedirs(save_act, exist_ok=True)
torch.save({"m":m, "s":s}, os.path.join(save_act, "statistic.pth"))
return m, s
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=0, load_act=[None, None], save_act=[None, None], img_size=None, return_ms=False):
"""Calculates the FID of two paths"""
for index, p in enumerate(paths):
if p is not None:
if isinstance(p, torch.utils.data.Dataset) or isinstance(p, list) or isinstance(p, torch.Tensor) or isinstance(p, np.ndarray):
pass
elif not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
else:
assert load_act[index] is not None
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size,
dims, device, num_workers, load_act[0], save_act[0], img_size)
m2, s2 = compute_statistics_of_path(paths[1], model, batch_size,
dims, device, num_workers, load_act[1], save_act[1], img_size)
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
if return_ms:
return fid_value, {"m1":m1, "s1":s1, "m2":m2, "s2":s2}
return fid_value