-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpoly.h
130 lines (101 loc) · 3.7 KB
/
poly.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#ifndef CP_POLY
#define CP_POLY
#include "globl.h"
#include "polytools.h"
struct PolyPf
{
vector<LG1> witness;
vector<LG1> witnessa;
// size in group elements
size_t getSize() const
{
return witness.size() + witnessa.size();
}
};
class CPPoly : public Benchmarkable {
CommScheme *cmScm;
public:
CPPoly(CommScheme *_cmScm) : cmScm(_cmScm) { }
void keygen(int d) { } // XXX: For now separated from other commitment's kg
// NB: For now we basically commit to the vector
CommOut commitPoly(const Scalars &v) const {
return cmScm->commit(v);
}
bool checkCommit(const Comm &cm) const {
return simple_pairing_check(cm.c, LG2::one(), LG1::one(), cm.kc);
}
void computeAnswer(CommOut &cmoutAns, const Ins &input, const Ins &v) const
{
auto ans = MultiVPolyT::evalMLE(v, input);
cmoutAns = cmScm->commit(ans);
}
void prove(const Ins &v, const CommOut &cmoutAns, const Ins &input, PolyPf &pf) const
{
auto &r = input;
size_t d = r.size();
uint64 N = v.size();
// witness coefficients
Scalars w_coeffs(1 << d);
Scalars tmp_v = v;
size_t start = 0;
for (auto i = 0; i < d; i++) {
uint64 pBound = 1 << (d-i-1);
// p is sort of an offset
for (uint64 p = 0; p < pBound; p++) {
uint64 p0 = p << 1;
uint64 p1 = (p << 1) + 1;
w_coeffs[start+p] = -tmp_v[p0] + tmp_v[p1];
tmp_v[p] = -tmp_v[p0]*(r[i]-1) + tmp_v[p1]*r[i];
}
tmp_v.resize(pBound);
start += pBound;
}
pf.witness.resize(d);
pf.witnessa.resize(d);
// NB: Putting g1 as bases; benchmark purposes only.
auto g1s = cmScm->getBases1();
// make multiexps
start = 0;
for (auto i = 0; i < d; i++) {
uint64 pBound = 1 << (d-i-1);
Scalars tmp_e(pBound);
for (uint64 p = 0; p < pBound; p++) {
tmp_e[p] = w_coeffs[start+p];
}
pf.witness[i] = multiExpMA<LG1>(g1s, tmp_e); // NB: bases for benchmarking purposes only
if (i != 0) {
pf.witnessa[i] = multiExpMA<LG1>(g1s, tmp_e); // NB: bases for benchmarking purposes only
}
start += pBound;
}
}
bool verify(const Comm &cmPoly, const Comm& cmAns, const Ins &pts, const PolyPf &pf) const
{
auto d = pts.size();
auto g2_precomp = def_ec::precompute_G2(LG2::one());
auto g2a_precomp = def_ec::precompute_G2(LG2::one()); //NB: Should use g^a. Benchmarking purposes only
bool isGd = true;
using preG1T = decltype(def_ec::precompute_G1(LG1::one()));
vector<preG1T> wl(d);
/* This is check commit basically */
for (auto i = 1; i < d; i++) {
wl[i] = def_ec::precompute_G1(pf.witness[i]);
auto wr = def_ec::precompute_G1(pf.witnessa[i]);
auto lhs = def_ec::miller_loop(wl[i], g2_precomp);
auto rhs = def_ec::miller_loop(wr, g2a_precomp);
auto out = def_ec::final_exponentiation(lhs*rhs.unitary_inverse());
isGd = isGd && (out == LGT::one());
}
auto acc = libff::Fqk<def_ec>::one();
for (auto i = 0; i < pf.witness.size(); i++) {
auto base2_precomp = def_ec::precompute_G2(pts[i]*LG2::one());
acc = acc*def_ec::miller_loop(wl[i], base2_precomp);
}
auto cmPolyAns_pre = def_ec::precompute_G1(cmPoly.c-cmAns.c);
acc = acc.unitary_inverse() * def_ec::miller_loop(cmPolyAns_pre, g2_precomp);
auto out = def_ec::final_exponentiation(acc);
isGd = isGd && (out == LGT::one());
return isGd;
}
};
#endif