-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathval.py
192 lines (152 loc) · 6.29 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
import torchvision
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import os
import numpy as np
from dataset import ucf101_val
from dataset import hmdb51_val
from dataset import mouse_val
from dataset import Larva_val
from get_model import get_model
import sklearn.metrics
import time
from opts import arg_parser
parser = arg_parser()
args = parser.parse_args()
best_prec1 = 0
torch.backends.cudnn.benchmark = False
ckpt_path = '/4T/zhujian/ckpt'
def main():
global best_prec1
batch_size = args.batch_size
lr = args.learning_rate
epochs = args.epochs
val_freq = args.val_freq
num_frames = args.num_frames
num_workers = args.num_workers
sample_clips = args.sample_clips
if args.dataset == 'ucf101':
dataset, num_classes = ucf101_val.make_data(num_frames=num_frames,
sample=args.sample, model=args.model, modality=args.modality, split=args.split,
batch_size=args.batch_size,num_workers=8)
input_size = 224
elif args.dataset == 'hmdb51':
dataset, num_classes = hmdb51_val.make_data(num_frames=num_frames,
sample=args.sample, model=args.model, modality=args.modality, split=args.split,
batch_size=args.batch_size,num_workers=8)
input_size = 224
elif args.dataset == 'mouse':
dataset, num_classes = mouse_val.make_data(num_frames=num_frames,
sample=args.sample, model=args.model, modality=args.modality, split=args.split,
batch_size=args.batch_size,num_workers=8)
input_size = 224
elif args.dataset == 'Larva':
dataset, num_classes = Larva_val.make_data(num_frames=num_frames,
sample=args.sample, model=args.model, modality=args.modality, split=args.split,
batch_size=args.batch_size,num_workers=8)
input_size = 224
model = get_model(args.model, args.modality, num_classes, args.rgb_dr, input_size, args.num_frames)
model = nn.DataParallel(model,device_ids=args.gpus)
print('=> loading checkpoint {}'.format(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'best')))
ckpt = torch.load(os.path.join(ckpt_path,args.dataset,str(args.split),args.modality,args.model,'best','model.ckpt'))
model.load_state_dict(ckpt)
# cudnn.benchmark = True
criterion = torch.nn.CrossEntropyLoss().cuda()
validate(dataset, model, criterion)
def validate(data_loader, model, criterion):
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
recall = AverageMeter()
target_label = LabelRecord()
pred_label = LabelRecord()
score = []
gt = []
with torch.no_grad():
end = time.time()
for i, sample in enumerate(data_loader):
label = sample['label_num']
inputs = sample['data']
input_var = inputs.cuda(async=True)
label = label.cuda(async=True)
if 'dfl' not in args.model:
output = model(input_var)
else:
out0, out1, out2 = model(input_var)
output = out0 + out1 + 0.1 * out2
# output = out1 * 1
prec_1, prec_5 = accuracy(output.data, label, topk=(1,2))
pred_label.update(output.argmax(-1).cpu().numpy())
target_label.update(label.cpu().numpy())
recall_score = sklearn.metrics.recall_score(target_label.record, pred_label.record, average='macro')
score.extend(output.data.cpu().numpy())
gt.extend(label.data.cpu().numpy())
top1.update(prec_1.data, inputs.size(0))
top5.update(prec_5.data, inputs.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print(('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Recall@1 ({recall:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(data_loader), batch_time=batch_time, recall=recall_score * 100,
top1=top1)))
np.save(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'score'),score)
np.save(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'gt'),gt)
template = "Prec1 :{:.2f}, Recall:{:.2f}, Sample Clips:{:2d}, num_frames: {:2d}\n"
with open(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'valid_result.txt'),'a') as f:
print(
template.format(
top1.avg, recall_score * 100, args.sample_clips, args.num_frames
)
)
f.writelines(
template.format(
top1.avg, recall_score * 100, args.sample_clips, args.num_frames
)
)
d = sklearn.metrics.classification_report(target_label.record, pred_label.record, digits=4)
with open(os.path.join('logdir',args.dataset,str(args.split),args.modality,args.model,'report.txt'),'a') as f:
f.writelines(d)
print(d)
return top1.avg
class LabelRecord(object):
def __init__(self):
self.reset()
def reset(self):
self.record = []
def update(self, val):
self.record.extend(val)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1,-1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100 / batch_size))
return res
if __name__ == "__main__":
main()