-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_graph.py
163 lines (133 loc) · 3.36 KB
/
export_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pandas as pd
import pickle
import numpy as np
import matplotlib.pyplot as plt
data = []
with open('./record.dat', 'rb') as fr:
try:
while True:
data.append(pickle.load(fr))
except EOFError:
pass
data = pd.DataFrame(np.array(data))
scores = []
distances = []
actor_losses = []
critic1_losses = []
critic2_losses = []
for r in data[1]:
scores.append(r)
for r in data[2]:
distances.append(r)
for r in data[3]:
actor_losses.append(r)
for r in data[4]:
critic1_losses.append(r)
for r in data[4]:
critic2_losses.append(r)
data_mean = []
with open('./record_mean.dat', 'rb') as record_mean:
try:
while True:
data_mean.append(pickle.load(record_mean))
except EOFError:
pass
data_mean = pd.DataFrame(np.array(data_mean))
episode = []
scores_mean = []
distances_mean = []
for r in data_mean[0]:
episode.append(r)
for r in data_mean[1]:
scores_mean.append(r)
for r in data_mean[2]:
distances_mean.append(r)
# plot
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(1, len(scores) + 1)
y = scores
plt.plot(x, y)
plt.grid()
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.title('Scores on BipedalWalker-v3')
plt.show()
namefig = "plot/scores_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
# plot the distance and mean
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(1, len(distances) + 1)
y = distances
plt.plot(x, y)
plt.grid()
plt.ylabel('Distance')
plt.xlabel('Episode #')
plt.title('Distances on BipedalWalker-v3')
plt.show()
namefig = "plot/distances_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
# plot the loss
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(1, len(actor_losses) + 1)
y = actor_losses
plt.plot(x, y)
plt.grid()
plt.ylabel('Actor Loss')
plt.xlabel('Episode #')
plt.title('Actor Loss on BipedalWalker-v3')
plt.show()
namefig = "plot/actor_loss_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(1, len(critic1_losses) + 1)
y = critic1_losses
plt.plot(x, y)
plt.grid()
plt.ylabel('Critic1 Loss')
plt.xlabel('Episode #')
plt.title('Critic Loss on BipedalWalker-v3')
plt.show()
namefig = "plot/critic1_loss_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(1, len(critic2_losses) + 1)
y = critic2_losses
plt.plot(x, y)
plt.grid()
plt.ylabel('Critic2 Loss')
plt.xlabel('Episode #')
plt.title('Critic Loss on BipedalWalker-v3')
plt.show()
namefig = "plot/critic2_loss_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
# plot
fig = plt.figure()
ax = fig.add_subplot(111)
x = episode
y = scores_mean
plt.plot(x, y)
plt.grid()
plt.ylabel('Mean Scores every 100 episodes')
plt.xlabel('Episode #')
plt.title('Mean Scores on BipedalWalker-v3')
plt.show()
namefig = "plot/mean_scores_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)
# plot the distance and mean
fig = plt.figure()
ax = fig.add_subplot(111)
x = episode
y = distances_mean
plt.plot(x, y)
plt.grid()
plt.ylabel('Mean Distances every 100 episodes')
plt.xlabel('Episode #')
plt.title('Mean Distances on BipedalWalker-v3')
plt.show()
namefig = "plot/mean_distances_TD3_episodes" + str(data.shape[0]) + ".jpg"
fig.savefig(namefig, dpi=300)