-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
130 lines (107 loc) · 4.87 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch.nn as nn
import torch
import torch.nn.functional as F
from hydra.utils import instantiate
import hydra
class KLLoss:
def __init__(self, weight, z_dims):
self.name = "KLLoss"
self.weight = weight
self.z_dims = z_dims
def __call__(self, mean, log_var):
if self.z_dims:
mean = mean[:, self.z_dims[0]: self.z_dims[1]]
log_var = log_var[:, self.z_dims[0]: self.z_dims[1]]
loss = (-0.5 * (1 + log_var - mean ** 2 - torch.exp(log_var)).sum(dim=1)).mean(dim=0)
return loss
class RegLoss:
def __init__(self, weight, z_dims):
self.name = "RegLoss"
self.weight = weight
self.z_dims = z_dims
self.criterion = nn.MSELoss()
def __call__(self, y, y_hat):
# loss = F.mse_loss(y, y_hat, reduction='none')
# loss = torch.mean(loss)
return self.criterion(y, y_hat)
class ReconLoss:
def __init__(self, weight, z_dims):
self.name = "ReconLoss"
self.weight = weight
self.z_dims = z_dims
def __call__(self, x, x_hat):
batch_size = x.shape[0]
loss = F.mse_loss(x, x_hat, reduction='none')
loss = loss.view(batch_size, -1).sum(axis=1)
loss = loss.mean()
return loss
class TripletLoss:
def __init__(self, weight, z_dims, margin, p):
self.name = "TripletLoss"
self.weight = weight
self.z_dims = z_dims
self.criterion = nn.TripletMarginLoss(margin=margin, p=p)
def __call__(self, z, z_pos, z_neg):
if self.z_dims:
z = z[:, self.z_dims[0]: self.z_dims[1]]
z_pos = z_pos[:, self.z_dims[0]: self.z_dims[1]]
z_neg = z_neg[:, self.z_dims[0]: self.z_dims[1]]
return self.criterion(z, z_pos, z_neg)
class TotalLoss:
def __init__(self, conf_file):
self.losses = [instantiate(conf_file.loss[loss_name]) for loss_name in conf_file.loss.total_loss]
self.weights = [loss.weight for loss in self.losses]
def __call__(self, mean=None, log_var=None, y=None, y_hat=None, x=None, x_hat=None, z=None, z_pos=None, z_neg=None):
losses_dict = {"TotalLoss": 0}
for loss in self.losses:
name = loss.name
if name == "KLLoss":
losses_dict[name] = loss(mean, log_var)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "RegLoss":
losses_dict[name] = loss(y, y_hat)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "ReconLoss":
losses_dict[name] = loss(x, x_hat)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "TripletLoss":
losses_dict[name] = loss(z, z_pos, z_neg)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
else:
raise Exception(f"No such loss: {name}")
return losses_dict
class FineTuneTotalLoss:
def __init__(self, conf_file):
self.losses = [instantiate(conf_file[loss_name]) for loss_name in conf_file.total_loss]
self.weights = [loss.weight for loss in self.losses]
self.only_healthy_rul = conf_file["only_healthy"]
self.healthy_rul_threshold = conf_file["healthy_rul_threshold"]
def __call__(self, mean=None, log_var=None, y=None, y_hat=None, x=None, x_hat=None, z=None, z_pos=None, z_neg=None):
losses_dict = {"TotalLoss": 0}
for loss in self.losses:
name = loss.name
if name == "KLLoss":
losses_dict[name] = loss(mean, log_var)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "RegLoss":
losses_dict[name] = loss(y, y_hat)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "ReconLoss":
losses_dict[name] = loss(x, x_hat)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
elif name == "TripletLoss":
# Apply Triplet Loss only for healthy RUL:
if self.only_healthy_rul:
loss_mask = y < self.healthy_rul_threshold
loss_mask = loss_mask.squeeze()
if sum(loss_mask) > 0:
losses_dict[name] = loss(z[loss_mask, :], z_pos[loss_mask, :], z_neg[loss_mask, :])*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
else:
losses_dict[name] = torch.FloatTensor([0])
else:
losses_dict[name] = loss(z, z_pos, z_neg)*loss.weight
losses_dict["TotalLoss"] += losses_dict[name]
else:
raise Exception(f"No such loss: {name}")
return losses_dict