-
Notifications
You must be signed in to change notification settings - Fork 91
/
rec_mappo.py
718 lines (612 loc) · 28.2 KB
/
rec_mappo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# Copyright 2022 InstaDeep Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import time
from typing import Any, Dict, Tuple
import chex
import flax
import hydra
import jax
import jax.numpy as jnp
import optax
from colorama import Fore, Style
from flax.core.frozen_dict import FrozenDict
from jax import tree
from omegaconf import DictConfig, OmegaConf
from rich.pretty import pprint
from mava.evaluator import get_eval_fn, get_num_eval_envs, make_rec_eval_act_fn
from mava.networks import RecurrentActor as Actor
from mava.networks import RecurrentValueNet as Critic
from mava.networks import ScannedRNN
from mava.systems.ppo.types import (
HiddenStates,
OptStates,
Params,
RNNLearnerState,
RNNPPOTransition,
)
from mava.types import (
ExperimentOutput,
LearnerFn,
MarlEnv,
Metrics,
RecActorApply,
RecCriticApply,
)
from mava.utils import make_env as environments
from mava.utils.checkpointing import Checkpointer
from mava.utils.config import check_total_timesteps
from mava.utils.jax_utils import unreplicate_batch_dim, unreplicate_n_dims
from mava.utils.logger import LogEvent, MavaLogger
from mava.utils.network_utils import get_action_head
from mava.utils.training import make_learning_rate
from mava.wrappers.episode_metrics import get_final_step_metrics
def get_learner_fn(
env: MarlEnv,
apply_fns: Tuple[RecActorApply, RecCriticApply],
update_fns: Tuple[optax.TransformUpdateFn, optax.TransformUpdateFn],
config: DictConfig,
) -> LearnerFn[RNNLearnerState]:
"""Get the learner function."""
actor_apply_fn, critic_apply_fn = apply_fns
actor_update_fn, critic_update_fn = update_fns
def _update_step(learner_state: RNNLearnerState, _: Any) -> Tuple[RNNLearnerState, Tuple]:
"""A single update of the network.
This function steps the environment and records the trajectory batch for
training. It then calculates advantages and targets based on the recorded
trajectory and updates the actor and critic networks based on the calculated
losses.
Args:
----
learner_state (NamedTuple):
- params (Params): The current model parameters.
- opt_states (OptStates): The current optimizer states.
- key (PRNGKey): The random number generator state.
- env_state (State): The environment state.
- last_timestep (TimeStep): The last timestep in the current trajectory.
- last_done (bool): Whether the last timestep was a terminal state.
- hstates (HiddenStates): The hidden state of the policy and critic RNN.
_ (Any): The current metrics info.
"""
def _env_step(
learner_state: RNNLearnerState, _: Any
) -> Tuple[RNNLearnerState, Tuple[RNNPPOTransition, Metrics]]:
"""Step the environment."""
(
params,
opt_states,
key,
env_state,
last_timestep,
last_done,
last_hstates,
) = learner_state
key, policy_key = jax.random.split(key)
# Add a batch dimension to the observation.
batched_observation = tree.map(lambda x: x[jnp.newaxis, :], last_timestep.observation)
ac_in = (batched_observation, last_done[jnp.newaxis, :])
# Run the network.
policy_hidden_state, actor_policy = actor_apply_fn(
params.actor_params, last_hstates.policy_hidden_state, ac_in
)
critic_hidden_state, value = critic_apply_fn(
params.critic_params, last_hstates.critic_hidden_state, ac_in
)
# Sample action from the policy and squeeze out the batch dimension.
action = actor_policy.sample(seed=policy_key)
log_prob = actor_policy.log_prob(action)
action, log_prob, value = action.squeeze(0), log_prob.squeeze(0), value.squeeze(0)
# Step the environment.
env_state, timestep = jax.vmap(env.step, in_axes=(0, 0))(env_state, action)
done = timestep.last().repeat(env.num_agents).reshape(config.arch.num_envs, -1)
hstates = HiddenStates(policy_hidden_state, critic_hidden_state)
transition = RNNPPOTransition(
last_done,
action,
value,
timestep.reward,
log_prob,
last_timestep.observation,
last_hstates,
)
learner_state = RNNLearnerState(
params, opt_states, key, env_state, timestep, done, hstates
)
return learner_state, (transition, timestep.extras["episode_metrics"])
# Step environment for rollout length
learner_state, (traj_batch, episode_metrics) = jax.lax.scan(
_env_step, learner_state, None, config.system.rollout_length
)
# Calculate advantage
params, opt_states, key, env_state, last_timestep, last_done, hstates = learner_state
# Add a batch dimension to the observation.
batched_last_observation = tree.map(lambda x: x[jnp.newaxis, :], last_timestep.observation)
ac_in = (batched_last_observation, last_done[jnp.newaxis, :])
# Run the network.
_, last_val = critic_apply_fn(params.critic_params, hstates.critic_hidden_state, ac_in)
# Squeeze out the batch dimension and mask out the value of terminal states.
last_val = last_val.squeeze(0)
def _calculate_gae(
traj_batch: RNNPPOTransition, last_val: chex.Array, last_done: chex.Array
) -> Tuple[chex.Array, chex.Array]:
def _get_advantages(
carry: Tuple[chex.Array, chex.Array, chex.Array], transition: RNNPPOTransition
) -> Tuple[Tuple[chex.Array, chex.Array, chex.Array], chex.Array]:
gae, next_value, next_done = carry
done, value, reward = transition.done, transition.value, transition.reward
gamma = config.system.gamma
delta = reward + gamma * next_value * (1 - next_done) - value
gae = delta + gamma * config.system.gae_lambda * (1 - next_done) * gae
return (gae, value, done), gae
_, advantages = jax.lax.scan(
_get_advantages,
(jnp.zeros_like(last_val), last_val, last_done),
traj_batch,
reverse=True,
unroll=16,
)
return advantages, advantages + traj_batch.value
advantages, targets = _calculate_gae(traj_batch, last_val, last_done)
def _update_epoch(update_state: Tuple, _: Any) -> Tuple:
"""Update the network for a single epoch."""
def _update_minibatch(train_state: Tuple, batch_info: Tuple) -> Tuple:
"""Update the network for a single minibatch."""
params, opt_states, key = train_state
traj_batch, advantages, targets = batch_info
def _actor_loss_fn(
actor_params: FrozenDict,
traj_batch: RNNPPOTransition,
gae: chex.Array,
key: chex.PRNGKey,
) -> Tuple:
"""Calculate the actor loss."""
# Rerun network
obs_and_done = (traj_batch.obs, traj_batch.done)
_, actor_policy = actor_apply_fn(
actor_params, traj_batch.hstates.policy_hidden_state[0], obs_and_done
)
log_prob = actor_policy.log_prob(traj_batch.action)
# Calculate actor loss
ratio = jnp.exp(log_prob - traj_batch.log_prob)
# Nomalise advantage at minibatch level
gae = (gae - gae.mean()) / (gae.std() + 1e-8)
actor_loss1 = ratio * gae
actor_loss2 = (
jnp.clip(
ratio,
1.0 - config.system.clip_eps,
1.0 + config.system.clip_eps,
)
* gae
)
actor_loss = -jnp.minimum(actor_loss1, actor_loss2)
actor_loss = actor_loss.mean()
# The seed will be used in the TanhTransformedDistribution:
entropy = actor_policy.entropy(seed=key).mean()
total_loss = actor_loss - config.system.ent_coef * entropy
return total_loss, (actor_loss, entropy)
def _critic_loss_fn(
critic_params: FrozenDict,
traj_batch: RNNPPOTransition,
targets: chex.Array,
) -> Tuple:
"""Calculate the critic loss."""
# Rerun network
obs_and_done = (traj_batch.obs, traj_batch.done)
_, value = critic_apply_fn(
critic_params, traj_batch.hstates.critic_hidden_state[0], obs_and_done
)
# Clipped MSE loss
value_pred_clipped = traj_batch.value + (value - traj_batch.value).clip(
-config.system.clip_eps, config.system.clip_eps
)
value_losses = jnp.square(value - targets)
value_losses_clipped = jnp.square(value_pred_clipped - targets)
value_loss = 0.5 * jnp.maximum(value_losses, value_losses_clipped).mean()
total_loss = config.system.vf_coef * value_loss
return total_loss, value_loss
# Calculate actor loss
key, entropy_key = jax.random.split(key)
actor_grad_fn = jax.value_and_grad(_actor_loss_fn, has_aux=True)
actor_loss_info, actor_grads = actor_grad_fn(
params.actor_params,
traj_batch,
advantages,
entropy_key,
)
# Calculate critic loss
critic_grad_fn = jax.value_and_grad(_critic_loss_fn, has_aux=True)
value_loss_info, critic_grads = critic_grad_fn(
params.critic_params, traj_batch, targets
)
# Compute the parallel mean (pmean) over the batch.
# This pmean could be a regular mean as the batch axis is on the same device.
actor_grads, actor_loss_info = jax.lax.pmean(
(actor_grads, actor_loss_info), axis_name="batch"
)
# pmean over devices.
actor_grads, actor_loss_info = jax.lax.pmean(
(actor_grads, actor_loss_info), axis_name="device"
)
critic_grads, value_loss_info = jax.lax.pmean(
(critic_grads, value_loss_info), axis_name="batch"
)
# pmean over devices.
critic_grads, value_loss_info = jax.lax.pmean(
(critic_grads, value_loss_info), axis_name="device"
)
# Update params and optimiser state
actor_updates, actor_new_opt_state = actor_update_fn(
actor_grads, opt_states.actor_opt_state
)
actor_new_params = optax.apply_updates(params.actor_params, actor_updates)
critic_updates, critic_new_opt_state = critic_update_fn(
critic_grads, opt_states.critic_opt_state
)
critic_new_params = optax.apply_updates(params.critic_params, critic_updates)
new_params = Params(actor_new_params, critic_new_params)
new_opt_state = OptStates(actor_new_opt_state, critic_new_opt_state)
actor_loss, (_, entropy) = actor_loss_info
value_loss, unscaled_value_loss = value_loss_info
total_loss = actor_loss + value_loss
loss_info = {
"total_loss": total_loss,
"value_loss": unscaled_value_loss,
"actor_loss": actor_loss,
"entropy": entropy,
}
return (new_params, new_opt_state, entropy_key), loss_info
params, opt_states, traj_batch, advantages, targets, key = update_state
key, shuffle_key, entropy_key = jax.random.split(key, 3)
# Shuffle minibatches
batch = (traj_batch, advantages, targets)
num_recurrent_chunks = (
config.system.rollout_length // config.system.recurrent_chunk_size
)
batch = tree.map(
lambda x: x.reshape(
config.system.recurrent_chunk_size,
config.arch.num_envs * num_recurrent_chunks,
*x.shape[2:],
),
batch,
)
permutation = jax.random.permutation(
shuffle_key, config.arch.num_envs * num_recurrent_chunks
)
shuffled_batch = tree.map(lambda x: jnp.take(x, permutation, axis=1), batch)
reshaped_batch = tree.map(
lambda x: jnp.reshape(
x, (x.shape[0], config.system.num_minibatches, -1, *x.shape[2:])
),
shuffled_batch,
)
minibatches = tree.map(lambda x: jnp.swapaxes(x, 1, 0), reshaped_batch)
# Update minibatches
(params, opt_states, entropy_key), loss_info = jax.lax.scan(
_update_minibatch, (params, opt_states, entropy_key), minibatches
)
update_state = (
params,
opt_states,
traj_batch,
advantages,
targets,
key,
)
return update_state, loss_info
update_state = (
params,
opt_states,
traj_batch,
advantages,
targets,
key,
)
# Update epochs
update_state, loss_info = jax.lax.scan(
_update_epoch, update_state, None, config.system.ppo_epochs
)
params, opt_states, traj_batch, advantages, targets, key = update_state
learner_state = RNNLearnerState(
params,
opt_states,
key,
env_state,
last_timestep,
last_done,
hstates,
)
return learner_state, (episode_metrics, loss_info)
def learner_fn(learner_state: RNNLearnerState) -> ExperimentOutput[RNNLearnerState]:
"""Learner function.
This function represents the learner, it updates the network parameters
by iteratively applying the `_update_step` function for a fixed number of
updates. The `_update_step` function is vectorized over a batch of inputs.
Args:
----
learner_state (NamedTuple):
- params (Params): The initial model parameters.
- opt_states (OptStates): The initial optimizer states.
- key (chex.PRNGKey): The random number generator state.
- env_state (LogEnvState): The environment state.
- timesteps (TimeStep): The initial timestep in the initial trajectory.
- dones (bool): Whether the initial timestep was a terminal state.
- hstates (HiddenStates): The hidden state of the policy and critic RNN.
"""
batched_update_step = jax.vmap(_update_step, in_axes=(0, None), axis_name="batch")
learner_state, (episode_info, loss_info) = jax.lax.scan(
batched_update_step, learner_state, None, config.system.num_updates_per_eval
)
return ExperimentOutput(
learner_state=learner_state,
episode_metrics=episode_info,
train_metrics=loss_info,
)
return learner_fn
def learner_setup(
env: MarlEnv, keys: chex.Array, config: DictConfig
) -> Tuple[LearnerFn[RNNLearnerState], Actor, RNNLearnerState]:
"""Initialise learner_fn, network, optimiser, environment and states."""
# Get available TPU cores.
n_devices = len(jax.devices())
# Get number of agents.
num_agents = env.num_agents
config.system.num_agents = num_agents
# PRNG keys.
key, actor_net_key, critic_net_key = keys
# Define network and optimiser.
actor_pre_torso = hydra.utils.instantiate(config.network.actor_network.pre_torso)
actor_post_torso = hydra.utils.instantiate(config.network.actor_network.post_torso)
action_head, _ = get_action_head(env.action_spec)
actor_action_head = hydra.utils.instantiate(action_head, action_dim=env.action_dim)
critic_pre_torso = hydra.utils.instantiate(config.network.critic_network.pre_torso)
critic_post_torso = hydra.utils.instantiate(config.network.critic_network.post_torso)
actor_network = Actor(
pre_torso=actor_pre_torso,
post_torso=actor_post_torso,
action_head=actor_action_head,
hidden_state_dim=config.network.hidden_state_dim,
)
critic_network = Critic(
pre_torso=critic_pre_torso,
post_torso=critic_post_torso,
hidden_state_dim=config.network.hidden_state_dim,
centralised_critic=True,
)
actor_lr = make_learning_rate(config.system.actor_lr, config)
critic_lr = make_learning_rate(config.system.critic_lr, config)
actor_optim = optax.chain(
optax.clip_by_global_norm(config.system.max_grad_norm),
optax.adam(actor_lr, eps=1e-5),
)
critic_optim = optax.chain(
optax.clip_by_global_norm(config.system.max_grad_norm),
optax.adam(critic_lr, eps=1e-5),
)
# Initialise observation with obs of all agents.
init_obs = env.observation_spec.generate_value()
init_obs = tree.map(
lambda x: jnp.repeat(x[jnp.newaxis, ...], config.arch.num_envs, axis=0),
init_obs,
)
init_obs = tree.map(lambda x: x[jnp.newaxis, ...], init_obs)
init_done = jnp.zeros((1, config.arch.num_envs, num_agents), dtype=bool)
init_obs_done = (init_obs, init_done)
# Initialise hidden state.
init_policy_hstate = ScannedRNN.initialize_carry(
(config.arch.num_envs, num_agents), config.network.hidden_state_dim
)
init_critic_hstate = ScannedRNN.initialize_carry(
(config.arch.num_envs, num_agents), config.network.hidden_state_dim
)
# initialise params and optimiser state.
actor_params = actor_network.init(actor_net_key, init_policy_hstate, init_obs_done)
actor_opt_state = actor_optim.init(actor_params)
critic_params = critic_network.init(critic_net_key, init_critic_hstate, init_obs_done)
critic_opt_state = critic_optim.init(critic_params)
# Get network apply functions and optimiser updates.
apply_fns = (actor_network.apply, critic_network.apply)
update_fns = (actor_optim.update, critic_optim.update)
# Get batched iterated update and replicate it to pmap it over cores.
learn = get_learner_fn(env, apply_fns, update_fns, config)
learn = jax.pmap(learn, axis_name="device")
# Pack params and initial states.
params = Params(actor_params, critic_params)
hstates = HiddenStates(init_policy_hstate, init_critic_hstate)
# Load model from checkpoint if specified.
if config.logger.checkpointing.load_model:
loaded_checkpoint = Checkpointer(
model_name=config.logger.system_name,
**config.logger.checkpointing.load_args, # Other checkpoint args
)
# Restore the learner state from the checkpoint
restored_params, restored_hstates = loaded_checkpoint.restore_params(
input_params=params, restore_hstates=True, THiddenState=HiddenStates
)
# Update the params and hstates
params = restored_params
hstates = restored_hstates if restored_hstates else hstates
# Initialise environment states and timesteps: across devices and batches.
key, *env_keys = jax.random.split(
key, n_devices * config.system.update_batch_size * config.arch.num_envs + 1
)
env_states, timesteps = jax.vmap(env.reset, in_axes=(0))(
jnp.stack(env_keys),
)
reshape_states = lambda x: x.reshape(
(n_devices, config.system.update_batch_size, config.arch.num_envs) + x.shape[1:]
)
# (devices, update batch size, num_envs, ...)
env_states = tree.map(reshape_states, env_states)
timesteps = tree.map(reshape_states, timesteps)
# Define params to be replicated across devices and batches.
dones = jnp.zeros(
(config.arch.num_envs, num_agents),
dtype=bool,
)
key, step_keys = jax.random.split(key)
opt_states = OptStates(actor_opt_state, critic_opt_state)
replicate_learner = (params, opt_states, hstates, step_keys, dones)
# Duplicate learner for update_batch_size.
broadcast = lambda x: jnp.broadcast_to(x, (config.system.update_batch_size, *x.shape))
replicate_learner = tree.map(broadcast, replicate_learner)
# Duplicate learner across devices.
replicate_learner = flax.jax_utils.replicate(replicate_learner, devices=jax.devices())
# Initialise learner state.
params, opt_states, hstates, step_keys, dones = replicate_learner
init_learner_state = RNNLearnerState(
params=params,
opt_states=opt_states,
key=step_keys,
env_state=env_states,
timestep=timesteps,
dones=dones,
hstates=hstates,
)
return learn, actor_network, init_learner_state
def run_experiment(_config: DictConfig) -> float:
"""Runs experiment."""
_config.logger.system_name = "rec_mappo"
config = copy.deepcopy(_config)
n_devices = len(jax.devices())
# Set recurrent chunk size.
if config.system.recurrent_chunk_size is None:
config.system.recurrent_chunk_size = config.system.rollout_length
else:
assert (
config.system.rollout_length % config.system.recurrent_chunk_size == 0
), "Rollout length must be divisible by recurrent chunk size."
assert (
config.arch.num_envs % config.system.num_minibatches == 0
), "Number of envs must be divisibile by number of minibatches."
# Create the enviroments for train and eval.
env, eval_env = environments.make(config=config, add_global_state=True)
# PRNG keys.
key, key_e, actor_net_key, critic_net_key = jax.random.split(
jax.random.PRNGKey(config.system.seed), num=4
)
# Setup learner.
learn, actor_network, learner_state = learner_setup(
env, (key, actor_net_key, critic_net_key), config
)
# Setup evaluator.
# One key per device for evaluation.
eval_keys = jax.random.split(key_e, n_devices)
eval_act_fn = make_rec_eval_act_fn(actor_network.apply, config)
evaluator = get_eval_fn(eval_env, eval_act_fn, config, absolute_metric=False)
# Calculate total timesteps.
config = check_total_timesteps(config)
assert (
config.system.num_updates > config.arch.num_evaluation
), "Number of updates per evaluation must be less than total number of updates."
# Calculate number of updates per evaluation.
config.system.num_updates_per_eval = config.system.num_updates // config.arch.num_evaluation
steps_per_rollout = (
n_devices
* config.system.num_updates_per_eval
* config.system.rollout_length
* config.system.update_batch_size
* config.arch.num_envs
)
# Logger setup
logger = MavaLogger(config)
cfg: Dict = OmegaConf.to_container(config, resolve=True)
cfg["arch"]["devices"] = jax.devices()
pprint(cfg)
# Set up checkpointer
save_checkpoint = config.logger.checkpointing.save_model
if save_checkpoint:
checkpointer = Checkpointer(
metadata=config, # Save all config as metadata in the checkpoint
model_name=config.logger.system_name,
**config.logger.checkpointing.save_args, # Checkpoint args
)
# Create an initial hidden state used for resetting memory for evaluation
eval_batch_size = get_num_eval_envs(config, absolute_metric=False)
eval_hs = ScannedRNN.initialize_carry(
(n_devices, eval_batch_size, config.system.num_agents),
config.network.hidden_state_dim,
)
# Run experiment for a total number of evaluations.
max_episode_return = -jnp.inf
best_params = None
for eval_step in range(config.arch.num_evaluation):
# Train.
start_time = time.time()
learner_output = learn(learner_state)
jax.block_until_ready(learner_output)
# Log the results of the training.
elapsed_time = time.time() - start_time
t = int(steps_per_rollout * (eval_step + 1))
episode_metrics, ep_completed = get_final_step_metrics(learner_output.episode_metrics)
episode_metrics["steps_per_second"] = steps_per_rollout / elapsed_time
# Separately log timesteps, actoring metrics and training metrics.
logger.log({"timestep": t}, t, eval_step, LogEvent.MISC)
if ep_completed: # only log episode metrics if an episode was completed in the rollout.
logger.log(episode_metrics, t, eval_step, LogEvent.ACT)
logger.log(learner_output.train_metrics, t, eval_step, LogEvent.TRAIN)
# Prepare for evaluation.
trained_params = unreplicate_batch_dim(learner_state.params.actor_params)
key_e, *eval_keys = jax.random.split(key_e, n_devices + 1)
eval_keys = jnp.stack(eval_keys)
eval_keys = eval_keys.reshape(n_devices, -1)
# Evaluate.
eval_metrics = evaluator(trained_params, eval_keys, {"hidden_state": eval_hs})
logger.log(eval_metrics, t, eval_step, LogEvent.EVAL)
episode_return = jnp.mean(eval_metrics["episode_return"])
if save_checkpoint:
# Save checkpoint of learner state
checkpointer.save(
timestep=steps_per_rollout * (eval_step + 1),
unreplicated_learner_state=unreplicate_n_dims(learner_output.learner_state),
episode_return=episode_return,
)
if config.arch.absolute_metric and max_episode_return <= episode_return:
best_params = copy.deepcopy(trained_params)
max_episode_return = episode_return
# Update runner state to continue training.
learner_state = learner_output.learner_state
# Record the performance for the final evaluation run.
eval_performance = float(jnp.mean(eval_metrics[config.env.eval_metric]))
# Measure absolute metric.
if config.arch.absolute_metric:
eval_batch_size = get_num_eval_envs(config, absolute_metric=True)
eval_hs = ScannedRNN.initialize_carry(
(n_devices, eval_batch_size, config.system.num_agents),
config.network.hidden_state_dim,
)
abs_metric_evaluator = get_eval_fn(eval_env, eval_act_fn, config, absolute_metric=True)
eval_keys = jax.random.split(key, n_devices)
eval_metrics = abs_metric_evaluator(best_params, eval_keys, {"hidden_state": eval_hs})
t = int(steps_per_rollout * (eval_step + 1))
logger.log(eval_metrics, t, eval_step, LogEvent.ABSOLUTE)
# Stop the logger.
logger.stop()
return eval_performance
@hydra.main(
config_path="../../../configs/default",
config_name="rec_mappo.yaml",
version_base="1.2",
)
def hydra_entry_point(cfg: DictConfig) -> float:
"""Experiment entry point."""
# Allow dynamic attributes.
OmegaConf.set_struct(cfg, False)
# Run experiment.
eval_performance = run_experiment(cfg)
print(f"{Fore.CYAN}{Style.BRIGHT}Recurrent MAPPO experiment completed{Style.RESET_ALL}")
return eval_performance
if __name__ == "__main__":
hydra_entry_point()