Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
最开始想到用BFS,这思维!
显然这是最最经典直接的DP问题。
设dp[i][j]
表示a[0][0]
到a[i][j]
的最小路径, 则显然有动态方程dp[i][j] = MIN(dp[i - 1][j], dp[i][j - 1])
,
int minPathSum(vector<vector<int>> &grid) {
if (grid.size() < 1)
return 0;
int n = grid.size();
int m = grid[0].size();
vector<vector<int>> dp(n, vector<int>(m, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < n; ++i)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 1; j < m; ++j)
dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < n; ++i)
for (int j = 1; j < m; ++j)
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
return dp[n - 1][m - 1];
}
时间和空间复杂度都是O(nm)。时间复杂度没有什么优化方案,当空间可以采用压缩的方法,显然dp[i][j]
只依赖于左边和上边一个值,即dp[i - 1][j]
和dp[i][j - 1]
,
而与前面的值无关。所以处理第i行j列时,与i-1行的该j列有关,以及i行j-1列有关,我们只需要声明dp[i], dp表示第i行j列的值,旧值dp[i]相当于dp[i - 1][j]
,
dp[i - 1]
相当于dp[i][j - 1]
,于是dp[i] = MIN (dp[i], dp[i - 1]
int minPathSum(vector<vector<int>> &grid) {
if (grid.size() < 1)
return 0;
int n = grid.size();
int m = grid[0].size();
vector<int> dp(n, 0);
dp[0] = grid[0][0];
for (int i = 1; i < n; ++i)
dp[i] = dp[i - 1] + grid[i][0];
for (int i = 1; i < n; ++i)
for (int j = 1; j < n; ++j) {
dp[j] = min(dp[j], dp[j - 1]) + grid[i][j];
}
return dp[n - 1];
}